- 13.46 An L-band pulse radar with a common transmitting and receiving antenna having a directive gain of 3500 operates at 1500 MHz and transmits 200 kW. If an object is 120 km from the radar and its scattering cross section is 8 m², find
 - (a) The magnitude of the incident electric field intensity of the object
 - (b) The magnitude of the scattered electric field intensity at the radar
 - (c) The amount of power captured by the object
 - (d) The power absorbed by the antenna from the scattered wave

a)
$$P_{ave,i} = \frac{G_d}{4\pi r^2} P_{rad} = \frac{3500}{4\pi (120\pi r^3)^2} (200\pi r^3) (13.7)$$

Chap $P_{ave,i} = \frac{|E_i|^2}{2\eta_0} \Rightarrow |E_i|^2 = \frac{2(376.7303)3500(200\pi r^3)}{4\pi (1200\pi r^3)^2}$
 $\frac{|E_i| = |.70723 \text{ V/m}}{4\pi (1200\pi r^3)^2}$

b) From (13.77), $\sigma = \lim_{r \to \infty} \frac{4\pi r^2 P_s}{P_i}$

$$\int_{S} = \frac{\sigma P_i}{4\pi r^2} = \frac{8(3500)200\pi r^3}{4\pi (1200\pi r^3)^2} = \frac{|E_s|^2}{2\eta_0}$$

1.710186 × $10^{-13} = |E_s|^2$
 $\frac{|E_s|}{2(376.7303)}$

(>) $|E_s| = |I|.3515 \text{ M/m}$

C) By defin of $|RCS| = |S| = |S$

d) Per (13,31) Radar transmission egin

$$R_r = \frac{(\lambda G_d)^2 \sigma \int_{rad}^{rad}}{(4\pi)^3 r^4} \quad \text{where } \lambda = \frac{7}{5} = \frac{2.9979 \times 10^8}{1500 \times 10^5} = 0.19986 \text{ m}$$

$$= \frac{(0.19986)3500}{(4\pi)^3 (120 \times 10^3)^4}$$

$$R_r = 1.9026 \times 10^{-12} W = 1.9026 pW$$