PE 11.9 Repeat Example 11.9, replacing the rectangular pulse by the triangular pulse.

- Ex. 11.9 A 75Ω transmission line of length 60 m is terminated by 100Ω load. <snip> Sketch $I(0, t)$ and $I(l, t)$ for $0<t<15 \mu \mathrm{~s}$.

$$
T=l / u=2, u s
$$

$$
\begin{array}{ll}
\Gamma_{S}=\frac{z_{9}-z_{0}}{z_{s}+z_{0}}=-1 / 2 \\
\frac{t<2 T}{V_{1, \text { max }}^{+}}=10 \mathrm{~V} \frac{75}{25+75}=7.5 \mathrm{~V} & \Gamma_{L}=\frac{100-75}{100+75}=1 / 7 \\
I_{1, \text { max }}^{+}=\frac{10 \mathrm{~V}}{25+75 \Omega}=0.1 \mathrm{~A}=100 \mathrm{~mA}
\end{array}, \begin{aligned}
& \text { V }
\end{aligned}
$$

Find $I(0, t)$ and $I(l, t)$ for $0<t<1 S_{u}$.

