A plane wave traveling in the $+y$-direction in a loss medium $\left(\varepsilon_{r}=4, \mu_{r}=1, \sigma=\right.$ $\left.10^{-2} \mathrm{~S} / \mathrm{m}\right)$ has $\overline{\mathcal{E}}=30 \cos \left(10^{9} \pi t+\pi / 4\right) \hat{a}_{z} \mathrm{~V} / \mathrm{m}$ at $\mathrm{y}=0$. Find:

$$
\begin{aligned}
& \text { a) } \bar{\varepsilon} \text { at } y=1 \mathrm{~m}, t=2 \mathrm{~ns} \\
& (10.18) \gamma=\sqrt{j \omega \mu(\sigma+j \omega t)}=\sqrt{j 10^{9} \pi\left(4 \pi \times 10^{-7}\right)\left(10^{-2}+j 10^{9} \pi(4) 8.854 \times 10^{-12}\right)} \\
& \quad \gamma=\frac{0.9408881+j 20.97933718 \mathrm{~m}^{-1}}{\tau_{\alpha}}
\end{aligned}
$$

for ty-dir, the phase term is $-\beta y$, and adapting ( 10.29 ) yields

$$
\begin{aligned}
& \bar{\zeta}(y, t)=30 e^{-0.94 y} \cos (10 \pi \pi t-20.979 y+\pi / 4) \hat{a}_{z} \mathrm{~V} / \mathrm{m} \\
& \bar{\varepsilon}\left(1,2 \times 10^{-5}\right)=30 e^{-0.940988} \cos (2 \pi-20.979337+\pi / 4) \hat{a}_{z} \mathrm{t} / \mathrm{m} \\
& \bar{\varepsilon}(y=1 \mathrm{~m}, 2 \mathrm{~ns})=2.62835 \hat{a}_{z} \mathrm{t} / \mathrm{m}
\end{aligned}
$$

b) The distance traveled by the wave to have a phase shift of $10^{\circ}$.

$$
\begin{gathered}
\text { phase shift }=\beta_{y}=20.979337 y=10^{\circ}\left(\pi / 190^{\circ}\right) \\
y=8.32 \mathrm{~mm}
\end{gathered}
$$

c) The distance traveled by the wave to have its amplitude reduced by $40 \%$, wave left is $100 \%-40 \%$ $=60 \%$

$$
\begin{aligned}
\Rightarrow e^{-\alpha y} & =0.6=e^{-0.9408881 y} \\
y & =\frac{1}{-0.9408881} \ln (0.6) \\
y & =0.5429 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \overline{\mathscr{H}} \text { at } y=2 m, t=2 n s \quad \hat{a}_{z} \times \hat{a}_{H}=\hat{a}_{y} \Rightarrow \hat{a}_{H}=\hat{a}_{x} \\
& \bar{A}=\frac{E_{0} e^{-\alpha y}}{|\eta|} \cos \left(\omega t-\beta y+\pi / 4-\theta_{\eta}\right) \hat{a}_{x} A / m \\
& \eta=\sqrt{\frac{j \omega \mu}{\sigma+j \omega t}}=\sqrt{\frac{j 10^{9} \pi\left(4 \pi \times 10^{-7}\right)}{10^{-2}+j 10^{9} \pi(4) 9.854 \times 10^{-12}}} \\
& =187.98866\left(2.5678989^{\circ} \Omega\right. \\
& \bar{H}=\frac{30}{187.99} e^{-0.940808 y} \cos \left(10^{9} \pi t-20.97934 y+\pi / 4-2.568^{\circ}\right) \hat{a}_{x} \frac{A}{m} \\
& \bar{H}\left(2,2 \times 10^{-9}\right)=\frac{30}{187.99} e^{-0.940888(2)} \cos \left(2 \pi-20.979(2)+\pi / 4 / 4.569^{\circ}\right) \hat{a}_{x} \\
& \bar{H}(y=2 \mathrm{~m}, 2 \mathrm{~ns})=-0.0226 \hat{a}_{x} \mathrm{~A} / \mathrm{m}=-22.6 \hat{a}_{x} \mathrm{~mA} / \mathrm{m}
\end{aligned}
$$

