10.37 The electric field intensity of a uniform plane wave in free space is given by

$$
\mathbf{E}=40 \cos (\omega t-\beta z) \mathbf{a}_{x}+60 \sin (\omega t-\beta z) \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
$$

(a) What is the wave polarization?
(b) Determine the magnetic field intensity.

- For part a), plot the polarization ellipse with axes selected so that the wave propagates into the page. Determine the sense, AR, \& tilt angle τ with respect to the vertical axis.
a) $\bar{E}=40 \cos (\omega t-\beta z) \hat{a}_{x}+60 \cos \left(\omega t-\beta z-90^{\circ}\right) \hat{a}_{y} \mathrm{t} / \mathrm{m}$

2 components of unequal magnitude that are 90° ont-of-phase
\rightarrow can't be linear due to 90° phase diff.
\rightarrow cant be circular due to unequal magnitudes
\Rightarrow Elliptical Polarization

1) Arbitrarily chose the $z=0$ plane to plot the polarization ellipse.
2) Do the plot for one period of time, ie., $0<\omega t<2 \pi$.

$$
\begin{array}{ll}
n:=0 . .72 \quad \omega t_{n}:=n \cdot \frac{2 \pi}{72} \quad \beta z:=0 \\
E x_{n}:=40 \cdot \cos \left(\omega t_{n}-\beta z\right) \quad V / m \quad E y_{n}:=60 \cdot \cos \left(\omega t_{n}-\beta z-\frac{\pi}{2}\right) \quad V / m
\end{array}
$$

+z-direction into page

From plot, the sense of the polarization ellipse is $\underline{\text { RH/righthand }}$ or CW/clockwise.
From plot, the axial ratio $\mathrm{AR}=2 * 60 / 2 * 40=120 / 80 \Rightarrow \mathbf{A R}=\mathbf{1 . 5}$.
From plot, the tilt angle τ with respect to the vertical $/ E_{x}$ axis is $\underline{\boldsymbol{\tau}=90^{\circ}}$.
b)

$$
\begin{aligned}
& \bar{H}=\frac{\hat{a}_{k} \times \bar{E}}{\eta} \text { where } \hat{a}_{k}=+\hat{a}_{z} \text { from " }-\beta z^{\prime \prime} \text { term } \\
& +\eta=\eta_{0}=376.73 \Omega \text { (free } \begin{array}{c}
\text { Space })
\end{array} \\
& =\hat{a}_{z} \times\left[\frac{40}{376.73} e^{-j \beta z} \hat{a}_{x}+\frac{60}{376.73} e^{-j\left(\beta z+90^{\circ}\right)} \hat{a}_{y}\right] \\
& =\hat{a}_{y} 0.106177 e^{-j \beta z}-\hat{a}_{x} 0.159265 e^{-j\left(\beta z+90^{\circ}\right)} \\
& \bar{A}=\operatorname{Re}\left\{\bar{H} e^{j \omega t}\right\} \\
& \overline{\lambda t}=-\hat{a}_{x} 0.1593 \cos \left(\omega t-\beta z-90^{\circ}\right)+\tilde{a}_{y} 0.1062 \cos \left(\omega t-\beta_{z}\right) \frac{1}{\mathrm{~m}} \\
& =-\hat{a}_{x} 0.1593 \sin \left(\omega t-\beta_{z}\right)+\tilde{a}_{y} 0.1062 \cos \left(\omega t-\beta_{z}\right) \mathrm{A} / \mathrm{m}
\end{aligned}
$$

