10.35 Determine the wave polarization of each of the following waves:

(a) $E_{0} \cos (\omega t+\beta y) \mathbf{a}_{x}+E_{0} \sin (\omega t+\beta y) \mathbf{a}_{z} \mathrm{~V} / \mathrm{m}$

- Also, plot the polarization ellipse with axes selected so that the wave propagates into the page. Determine the sense, AR, and tilt angle τ with respect to the vertical axis. Let $E_{0}=10 \mathrm{~V} / \mathrm{m}$ for plot.

Observe components have the same amplitude and that the $\cos ()$ function and $\sin ()$ function are 90° out-of-phase $\quad \Rightarrow$ Circular polarization.

Use MathCad to plot polarization ellipse-
Plot the polarization ellipse for a circularly-polarized UPW propagating in the $-y$-direction $(+\beta y$ term)) on the $y=0$ plane. Let $\mathrm{E} 0=10 \mathrm{~V} / \mathrm{m}$.
$\mathrm{n}:=0 . .32 \quad \mathrm{wt}_{\mathrm{n}}:=\mathrm{n} \frac{\pi}{16} \quad E x_{n}:=10 \cos \left(\mathrm{wt}_{\mathrm{n}}\right) \quad E z_{\mathrm{n}}:=10 \cdot \sin \left(\mathrm{wt}_{\mathrm{n}}\right) \quad \mathrm{V} / \mathrm{m}$
$-y$-direction into page

From plot, the sense of the polarization ellipse is $\mathbf{R H} /$ righthand or CW/clockwise.
For circular polarization, the axial ratio $\mathbf{A R}=\mathbf{1}$.
For circular polarization, the tilt angle τ with respect to the vertical axis is $\underline{\tau=\mathbf{N} / \mathbf{A}}$.

