If $\bar{B}_{1}=\hat{a}_{x} \alpha+\hat{a}_{y} \beta+\hat{a}_{z} \gamma$ at $x=0^{-}$of the interface between two media shown in the previous problem, find \bar{H}_{2} at $x=0^{+}$.

* Boundary condition problem. Use $(9.31 d) B_{1 n}=B_{2 n}$ and $(9,31 b) H_{1 t}-H_{2 t}=J_{s}$ with the assumption that $\overline{J_{s}}=0$.
* From the drawing, $\hat{a}_{n_{12}}=\hat{a}_{x}$ while $\hat{a}_{y}+\hat{a}_{z}$ are tangential to the interface
From $(9.31 d), \quad \bar{B}_{2 n}=\bar{B}_{1 n}=\alpha \hat{a}_{x}$
Now, $\bar{B}_{1 t}=\beta \hat{a}_{y}+\gamma \hat{a}_{z}=\mu_{1} \bar{H}_{1 t}$ per $(9.306) \bar{b}=\mu \bar{H}$

$$
G \bar{H}_{1 t}=\beta / \mu_{1} \hat{a}_{y}+\frac{\gamma}{\mu_{1}} \hat{a}_{z}
$$

From $(9.31 b), \quad \bar{H}_{2 t}=\bar{H}_{1 t}=\frac{\beta}{\mu_{1}} \hat{a}_{1}+\frac{\gamma}{\mu_{1}} \hat{a}_{z}$
$\operatorname{Per}(9,30 b), \bar{B}_{2 n}=\mu_{2} \bar{H}_{2 n}=\alpha \hat{a}_{x} \Rightarrow \bar{H}_{2 n}=\frac{\alpha}{\mu_{2}} \hat{a}_{x}$

$$
\begin{aligned}
& \bar{H}_{2}=\bar{H}_{2 n}+\bar{H}_{2 t} \\
& \bar{H}_{2}=\frac{\alpha}{\mu_{2}} \hat{a}_{x}+\frac{\beta}{\mu_{1}} \hat{a}_{y}+\frac{\gamma}{\mu_{1}} \hat{a}_{z}
\end{aligned}
$$

