An interface between two media is shown below. If $\bar{E}_{1}=\hat{a}_{x} \alpha+\hat{a}_{y} \beta+\hat{a}_{z} \gamma$ at $x=0^{-}$, find \bar{E}_{2} at $x=0^{+}$.

Boundary condition problem. Use (9.31a) E $E_{1 t}=E_{2 t}$ and $(9.31 \mathrm{c}) D_{1 n}-D_{2 n}=P_{s}$ with the assumption that $\rho_{s}=0$.

From the drawing, $\hat{a}_{n}=\hat{a}_{x}$ while \hat{a}_{y} o \hat{a}_{z} are tangential to the interface.
$\operatorname{From}(9.31 c), \bar{E}_{2 t}=\overline{E_{1 t}}=\beta \hat{a}_{y}+\gamma \hat{a}_{z}$
From $(9.31 a)+(9.30 a) \bar{D}=\epsilon \bar{E}_{1}, \bar{D}_{2 n}=\bar{D}_{1 n}$. So, we get $\epsilon_{2} \bar{E}_{2 n}=\epsilon_{1} \bar{E}_{1 n}=\epsilon_{1} \alpha \hat{a}_{x} \Rightarrow \bar{E}_{2 n}=\frac{\epsilon_{1}}{\epsilon_{2}} \alpha \bar{a}_{x}$

$$
\begin{aligned}
& \bar{E}_{2}=\bar{E}_{2 n}+\overline{E_{2 t}} \\
& \bar{E}_{2}=\frac{\epsilon_{1}}{E_{2}} \alpha \hat{a}_{x}+\beta \hat{a}_{y}+\gamma \hat{a}_{z}
\end{aligned}
$$

