Maxwell's Equations

Static Fields:

	Integral Form	Differential Form
Faraday's Law	$\oint \overline{E} \cdot d\overline{l} = 0$	$\overline{\nabla} \times \overline{E} = 0$
Ampere's Law	$\oint_{c}^{c} \overline{H} \cdot d\overline{l} = \int_{s} \overline{J} \cdot d\overline{s}$	$\overline{\nabla} \times \overline{H} = \overline{J}$
Gauss' Law	$\oint_{V} \overline{D} \cdot d\overline{s} = \int_{V}^{s} \rho_{v} dV$	$\overline{\nabla}\!\cdot\!\overline{D}=\rho_{\rm v}$
	$\oint \overline{B} \cdot d\overline{s} = 0$	$\overline{\nabla} \cdot \overline{B} = 0$
	S	

Time-Varying Fields:

	Integral Form	Differential Form
Faraday's Law	$\oint_{c} \overline{\mathcal{E}} \cdot d\overline{l} = -\frac{d}{dt} \int_{s} \overline{\mathcal{B}} \cdot d\overline{s}$	$\overline{\nabla} \times \overline{\mathcal{E}} = -\frac{\partial \overline{\mathcal{B}}}{\partial t}$
Ampere's Law	$\oint_{c} \overline{\mathcal{H}} \cdot d\overline{l} = \int_{s} \overline{\mathcal{J}} \cdot d\overline{s} + \int_{s} \frac{\partial \overline{\mathcal{D}}}{\partial t} \cdot d\overline{s}$	$\overline{\nabla} \times \overline{\mathcal{H}} = \overline{\mathcal{J}} + \frac{\partial \overline{\mathcal{D}}}{\partial t}$
Gauss' Law	$\oint_{s} \overline{\mathcal{D}} \cdot d\overline{s} = \int_{V} \rho_{v} dV$	$\overline{\nabla}\!\cdot\!\overline{\mathcal{D}} = \rho_v$
	$\oint_{s} \overline{\mathcal{B}} \cdot d\overline{s} = 0$	$\overline{\nabla}\!\cdot\!\overline{\!\mathcal{B}}=0$

Time-Varying Fields, simple media, & stationary circuits:

	Integral Form	Differential Form
Faraday's Law	$\oint_{c} \overline{\mathcal{E}} \cdot d\overline{l} = -\mu \frac{d}{dt} \int_{s} \overline{\mathcal{H}} \cdot d\overline{s}$	$\overline{\nabla} \times \overline{\mathcal{E}} = -\mu \frac{\partial \overline{\mathcal{H}}}{\partial t}$
Ampere's Law	$\oint_{c} \overline{\mathcal{H}} \cdot d\overline{l} = \sigma \int_{s} \overline{\mathcal{E}} \cdot d\overline{s} + \varepsilon \frac{d}{dt} \int_{s} \overline{\mathcal{E}} \cdot d\overline{s}$	$\overline{\nabla} \times \overline{\mathcal{H}} = \sigma \overline{\mathcal{E}} + \varepsilon \frac{\partial \overline{\mathcal{E}}}{\partial t} + \overline{\mathcal{J}}$
	$+\int_{s} \overline{\mathcal{J}} \cdot d\overline{s}$	
Gauss' Law	$\oint_{s} \overline{\mathcal{E}} \cdot d\overline{s} = \frac{1}{\varepsilon} \int_{V} \rho_{v} dV$	$\overline{\nabla} \cdot \overline{\mathcal{E}} = \frac{\rho_v}{\varepsilon}$
	$\oint_{s} \overline{\mathcal{H}} \cdot d\overline{s} = 0$	$\overline{\nabla} \cdot \overline{\mathcal{H}} = 0$

Sinusoidal Steady-State Time-Varying Fields:

	Integral Form	Differential Form
Faraday's Law	$\oint \hat{\overline{E}} \cdot d\overline{l} = -j\omega \int \hat{\overline{B}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{E}} = -j\omega \hat{\overline{B}}$
Ampere's Law	$\oint_{c}^{c} \hat{H} \cdot d\bar{l} = \int_{s} \hat{J} \cdot d\bar{s} + j\omega \int_{s} \hat{D} \cdot d\bar{s}$	$\overline{\nabla} \times \hat{\overline{H}} = \hat{\overline{J}} + j\omega\hat{\overline{D}}$
Gauss' Law	$\oint_{s} \hat{\overline{D}} \cdot d\overline{s} = \int_{V} \hat{\rho}_{v} dV$	$\overline{\nabla}\!\cdot\!\hat{\overline{D}} = \hat{\rho}_{v}$
	$\oint \hat{\overline{B}} \cdot d\overline{s} = 0$	$\overline{\nabla}\cdot\hat{\overline{B}}=0$

Sinusoidal Steady-State Time-Varying Fields & Simple Media:

	Integral Form	Differential Form
Faraday's Law	$\oint \hat{\overline{E}} \cdot d\overline{l} = -j\omega\mu \int \hat{\overline{H}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{E}} = -j\omega\mu\hat{\overline{H}}$
Ampere's Law	$\oint_{c} \hat{\overline{H}} \cdot d\overline{l} = (\sigma + j\omega\varepsilon) \int_{s} \hat{\overline{E}} \cdot d\overline{s} + \int_{s} \hat{\overline{J}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{H}} = (\sigma + j\omega\varepsilon)\hat{\overline{E}} + \hat{\overline{J}}$
Gauss' Law	$\oint_{s} \hat{E} \cdot d\overline{s} = \frac{1}{\varepsilon} \int_{V} \hat{\rho}_{v} dV$	$\overline{\nabla} \cdot \hat{\overline{E}} = \frac{\hat{\rho}_{\nu}}{\varepsilon}$
	$\oint \hat{\bar{H}} \cdot d\overline{s} = 0$	$\bar{\nabla}\cdot\hat{\bar{H}}=0$

Other important relationships:

Lorentz Force Eqn. Constitutive Relations Ohm's Law $\begin{aligned} \overline{\mathcal{F}} &= q \left(\overline{\mathcal{E}} + \overline{u} \times \overline{\mathcal{B}} \right) \\ \overline{\mathcal{D}} &= \varepsilon \overline{\mathcal{E}} = \varepsilon_0 \overline{\mathcal{E}} + \overline{\mathcal{P}} \qquad \overline{\mathcal{B}} = \mu \overline{\mathcal{H}} = \mu_0 (\overline{\mathcal{H}} + \overline{\mathcal{M}}) \\ \overline{\mathcal{J}}_c &= \sigma \overline{\mathcal{E}} \end{aligned}$

 $\begin{array}{c} \underline{\text{Electric}} \\ \text{Boundary Conditions} \end{array} \begin{cases} \text{Tangential-} \quad \overline{\mathcal{E}}_{1t} = \overline{\mathcal{E}}_{2t} \text{ or } \hat{a}_{n12} \times (\overline{\mathcal{E}}_2 - \overline{\mathcal{E}}_1) = 0 \\ \text{Normal-} \quad \hat{a}_{n12} \cdot (\overline{\mathcal{D}}_2 - \overline{\mathcal{D}}_1) = \rho_s \\ \text{where surface normal } \hat{a}_{n12} \text{ points from region 1 into region 2, and } \mathcal{B}_{1n} \ll \mathcal{D}_{1n} \text{ point away from boundry} \\ \end{array}$

Poynting Vector	$\overline{\mathcal{S}} = \overline{\mathcal{E}} imes \overline{\mathcal{H}}$
Poynting Theorem	
Differential Form-	$-\overline{\nabla}\cdot\overline{S} = \overline{\mathcal{E}}\cdot\overline{\mathbb{I}} + \overline{\mathcal{E}}\cdot\frac{\partial\overline{\mathcal{D}}}{\partial t} + \overline{\mathcal{H}}\cdot\frac{\partial\overline{\mathcal{B}}}{\partial t}$
Integral Form-	$-\oint_{s}\overline{\mathcal{S}}\cdot d\overline{s} = \int_{V}\overline{\mathcal{E}}\cdot\overline{\mathbb{I}}dV + \int_{V}\left(\overline{\mathcal{E}}\cdot\frac{\partial\overline{\mathcal{D}}}{\partialt}\right)dV + \int_{V}\left(\overline{\mathcal{H}}\cdot\frac{\partial\overline{\mathcal{B}}}{\partialt}\right)dV$