Maxwell's Equations

Time-Varying Fields:

Integral Form
Faraday's Law $\quad \oint_{c} \overline{\mathcal{E}} \cdot d \bar{l}=-\frac{d}{d t} \int_{\mathrm{s}} \overline{\mathcal{B}} \cdot d \bar{s}$
Ampere's Law $\quad \oint_{c} \overline{\mathcal{H}} \cdot d \bar{l}=\int_{s} \overline{\mathcal{J}} \cdot d \bar{s}+\int_{s} \frac{\partial \overline{\mathcal{D}}}{\partial t} \cdot d \bar{s}$

$$
\oint_{s} \overline{\mathcal{D}} \cdot d \bar{s}=\int_{V} \rho_{v} d V
$$

$$
\oint \overline{\mathcal{B}} \cdot d \bar{s}=0
$$

Differential Form

$$
\bar{\nabla} \times \overline{\mathcal{E}}=-\frac{\partial \overline{\mathcal{B}}}{\partial t}
$$

$\bar{\nabla} \times \overline{\mathcal{H}}=\overline{\mathcal{J}}+\frac{\partial \overline{\mathcal{D}}}{\partial t}$
$\bar{\nabla} \cdot \overline{\mathcal{D}}=\rho_{v}$
$\bar{\nabla} \cdot \overline{\mathcal{B}}=0$

