Maxwell's Equations

Sinusoidal Steady-State Time-Varying Fields:

	Integral Form	Differential Form
Faraday's Law	$\oint \hat{\overline{E}} \cdot d\overline{l} = -j\omega \int \hat{\overline{B}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{E}} = -j\omega \hat{\overline{B}}$
Ampere's Law	$\oint_{c} \hat{\overline{H}} \cdot d\overline{l} = \int_{s} \hat{\overline{J}} \cdot d\overline{s} + j\omega \int_{s} \hat{\overline{D}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{H} = \hat{J} + j\omega \hat{D}$
Gauss' Law	$\oint \hat{\overline{D}} \cdot d\overline{s} = \int_{V} \hat{\rho}_{v} dV$	$\overline{\nabla} \cdot \hat{\overline{D}} = \hat{\rho}_{v}$
	$\oint \hat{B} \cdot d\overline{s} = 0$	$\overline{\nabla}\cdot\hat{\overline{B}}=0$
	3	

Sinusoidal Steady-State Time-Varying Fields & Simple Media:

	Integral Form	Differential Form
Faraday's Law	$\oint_{c} \hat{\overline{E}} \cdot d\overline{l} = -j\omega\mu \int_{s} \hat{\overline{H}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{E}} = -j\omega\mu\hat{\overline{H}}$
Ampere's Law	$\oint_{c} \hat{\overline{H}} \cdot d\overline{l} = (\sigma + j\omega\varepsilon) \int_{s} \hat{\overline{E}} \cdot d\overline{s} + \int_{s} \hat{\overline{J}} \cdot d\overline{s}$	$\overline{\nabla} \times \hat{\overline{H}} = (\sigma + j\omega\varepsilon)\hat{\overline{E}} + \hat{\overline{J}}$
Gauss' Law	$\oint_{s} \hat{\overline{E}} \cdot d\overline{s} = \frac{1}{\varepsilon} \int_{V} \hat{\rho}_{v} dV$	$\overline{\nabla} \cdot \hat{\overline{E}} = \frac{\hat{\rho}_v}{\varepsilon}$
	$\oint_{s} \hat{\bar{H}} \cdot d\bar{s} = 0$	$\overline{\nabla}\cdot\hat{\overline{H}}=0$