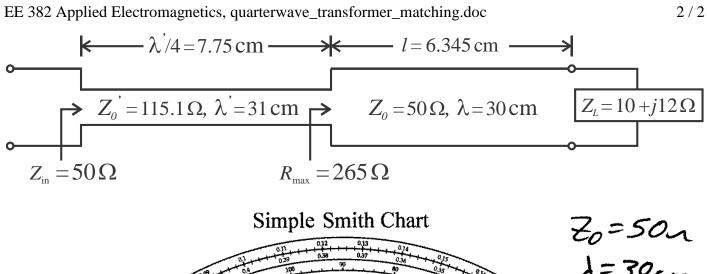
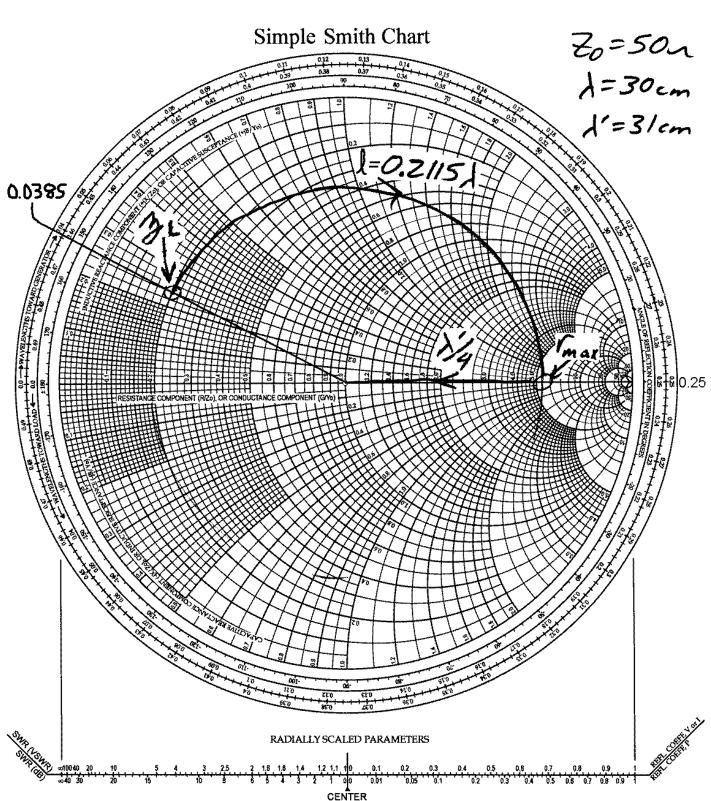

Match a 10+j 12Ω load to a 50Ω microstrip transmission line (λ =30 cm) using a quarter-wave transformer and 50Ω microstrip. Restriction- the match should be as short as possible.

1) Normalize Z_L and plot on Smith chart

- ➤ Normalize $z_L = Z_L / Z_0 = (10 + j \, 12) / 50 \implies \underline{z_L} = 0.2 + j \, 0.24 \, \Omega / \Omega$.
- Plot z_L on Smith chart by finding intersection of r = 0.2 circle & x = 0.24 arc.

2) Find first point along 50Ω microstrip where the impedance is real


- ▶ Use compass to draw arc of constant $|\Gamma|$ from z_L point on Smith chart in the "WAVELENGTHS TOWARD GENERATOR" direction until reaching the horizontal/real axis to right of origin.
- Read $\underline{r_{\text{max}}} = 5.3$ on Smith chart. This corresponds to $R_{\text{max}} = R_{\text{max}} Z_0 = (5.3) 50$ $\Rightarrow \underline{R_{\text{max}}} = 265 \Omega$.
- Find distance from z_L to r_{max} by drawing radial line from the center of Smith chart through z_L and the "WAVELENGTHS TOWARD GENERATOR" scale, reading 0.0385 and noting r_{max} is at 0.25 on the scale. The distance $l = (0.25\text{-}0.0385)\lambda = 0.2115\lambda \Rightarrow \underline{l = 6.345 \text{ cm}}$.



Now that we have a real impedance, we can use a quarter-wave transformer to match to 50Ω (next step).

3) Design quarter-wave transformer to match $R_{\rm max}$ to 50Ω

- Very equation (11.58) of text to find characteristic impedance of quarterwave transformer $Z_0' = \sqrt{Z_0 Z_L} = \sqrt{Z_0 R_{\text{max}}} = \sqrt{50(265)} \Rightarrow \underline{Z_0'} = 115.109 \Omega$.
- By definition, a quarter-wave transformer will have a length of $\lambda'/4$. The wavelength λ' on 115.1 Ω microstrip will NOT be the same as $\lambda=30$ cm on 50 Ω microstrip (Note: wavelength for microstrip depends on circuit board material and thickness as well as microstrip width, see section 11.8 of text). For the sake of this example, assume $\lambda'=31$ cm. Hence, $\lambda'/4=7.75$ cm.

