Polarization Examples

$>$ Arbitrarily choose the $z=0$ plane to plot the polarization ellipse as this makes the '- βz ' term zero rather than some other constant.
$>$ Arbitrarily choose to select axes for the plot of the polarization ellipse such that the wave is propagating into the page.
$>$ Plot the polarization ellipse over one period (T) of time, i.e., let ' ωt ' term go from 0 to 2π.

Linear Polarization

Assume we have a UPW where the electric field is given by

$$
\overline{\mathcal{E}}(z, t)=\hat{a}_{x} 50 \cos (\omega t-\beta z)-\hat{a}_{y} 60 \cos (\omega t-\beta z)(\mathrm{V} / \mathrm{m})
$$

From the ' $-\beta z$ ' term, we know the UPW is propagating in the $+z$-direction. On the $z=0$ plane, the equation for the UPW simplifies to

$$
\overline{\mathcal{E}}(0, t)=\hat{a}_{x} 50 \cos (\omega t)-\hat{a}_{y} 60 \cos (\omega t)(\mathrm{V} / \mathrm{m})
$$

So, the electric field has two orthogonal components that are unequal in magnitude and $\pm \pi\left(\pm 180^{\circ}\right)$ out of phase [trig identity $-\cos (\mathrm{A})=\cos (\mathrm{A} \pm \pi)$].

Use MathCad \& CorelDraw to plot the polarization ellipse with \mathcal{E}_{x} as the vertical axis and \mathcal{E}_{y} as the horizontal given so that the $+z$-direction $\left(\hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z}\right)$ is into the page.

$$
\mathrm{n}:=0 . .72 \quad \omega \mathrm{t}_{\mathrm{n}}:=\frac{2 \cdot \pi \cdot \mathrm{n}}{72} \quad \operatorname{Ex}_{-} \operatorname{lin}_{\mathrm{n}}:=50 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}\right) \quad \text { Ey_lin }_{\mathrm{n}}:=-60 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}\right)
$$

$\omega t(\mathrm{rad})$	$\mathcal{E}_{x}(\mathrm{~V} / \mathrm{m})$	$\mathcal{E}_{y}(\mathrm{~V} / \mathrm{m})$
0	$50 \cos (0)$	$-60 \cos (0)$
	$=50$	$=-60$
$\pi / 4$	$50 \cos (\pi / 4)$	$-60 \cos (0)$
	$=35.36$	$=-42.43$

$\omega t=0 \rightarrow$

Note: $\underline{\text { Sense N/A, }}$, axial ratio $\underline{\mathbf{A R}=\infty}$, \& tilt angle wrt x-direction is $\underline{\boldsymbol{\tau} \approx \mathbf{5 0}^{\circ}}$.

Circular Polarization

Assume we have a UPW where the electric field is given by

$$
\overline{\mathcal{E}}(z, t)=\hat{a}_{x} 10 \cos (\omega t-\beta z)+\hat{a}_{y} 10 \cos (\omega t-\beta z-\pi / 2)(\mathrm{V} / \mathrm{m})
$$

From the ' $-\beta z$ ' term, we know the UPW is propagating in the $+z$-direction. On the $z=0$ plane, the equation for the UPW simplifies to

$$
\overline{\mathcal{E}}(0, t)=\hat{a}_{x} 10 \cos (\omega t)+\hat{a}_{y} 10 \cos (\omega t-\pi / 2) \quad(\mathrm{V} / \mathrm{m})
$$

So, the electric field has two orthogonal components that are equal in magnitude and $-\pi / 2\left(-90^{\circ}\right)$ out of phase.

Use MathCad \& CorelDraw to plot the polarization ellipse with \mathcal{E}_{x} as the vertical axis and \mathcal{E}_{y} as the horizontal given so that the $+z$-direction $\left(\hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z}\right)$ is into the page.

$$
\mathrm{n}:=0 . .72 \quad \omega \mathrm{t}_{\mathrm{n}}:=\frac{2 \cdot \pi \cdot \mathrm{n}}{72}
$$

$$
\operatorname{Ex}_{-} \operatorname{cir}_{\mathrm{n}}:=10 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}\right) \quad \text { Ey_cir}{ }_{\mathrm{n}}:=10 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}-\frac{\pi}{2}\right)
$$

$\omega t(\mathrm{rad})$	$\mathcal{E}_{x}(\mathrm{~V} / \mathrm{m})$	$\mathcal{E}_{y}(\mathrm{~V} / \mathrm{m})$
0	$10 \cos (0)$	$10 \cos (0-\pi / 2)$
	$=10$	$=0$
$\pi / 4$	$10 \cos (\pi / 4)$ $=7.07$	$10 \cos (\pi / 4-\pi / 2)$
	$=7.07$	

Note: Sense CW or righthand (RH), axial ratio $\underline{\mathbf{A R}=\mathbf{1}}$, and tilt angle τ wrt x-direction is $\mathbf{N / A}$.

Elliptical Polarization

Assume we have a UPW where the electric field is given by

$$
\overline{\mathcal{E}}(z, t)=\hat{a}_{x} 10 \cos (\omega t-\beta z)+\hat{a}_{y} 10 \cos (\omega t-\beta z+\pi / 6)(\mathrm{V} / \mathrm{m}) .
$$

From the ' $-\beta z$ ' term, we know the UPW is propagating in the $+z$-direction. On the $z=0$ plane, the equation for the UPW simplifies to

$$
\overline{\mathcal{E}}(0, t)=\hat{a}_{x} 10 \cos (\omega t)+\hat{a}_{y} 10 \cos (\omega t+\pi / 6) \quad(\mathrm{V} / \mathrm{m}) .
$$

So, the electric field has two orthogonal components that are equal in magnitude but $\pi / 6\left(30^{\circ}\right)$ out of phase.

Use MathCad \& CorelDraw to plot the polarization ellipse with \mathcal{E}_{x} as the vertical axis and \mathcal{E}_{y} as the horizontal given so that the $+z$-direction ($\hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z}$) is into the page.

$$
\mathrm{n}:=0 . .72 \quad \omega \mathrm{t}_{\mathrm{n}}:=\frac{2 \cdot \pi \cdot \mathrm{n}}{72}
$$

$$
\operatorname{Ex}_{-} \mathrm{ell}_{\mathrm{n}}:=10 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}\right) \quad \text { Ey_ell } \mathrm{e}_{\mathrm{n}}:=10 \cdot \cos \left(\omega \mathrm{t}_{\mathrm{n}}+\frac{\pi}{6}\right)
$$

Note: Sense CCW or lefthand ($\mathbf{L H}$), axial ratio $\underline{\mathbf{A R} \approx 3.7 \text {, and tilt angle }}$ wrt x-direction is $\boldsymbol{\tau} \approx \mathbf{1 3 5}^{\circ}$.

