Matching load using a discrete series components

- Assume we have a source matched to the characteristic impedance Z_{0} of the transmission line.

- Therefore, we are seeking to match the load Z_{L} to Z_{0} as well, i.e., we want $Z_{\text {in }}=Z_{0}$.
- To avoid power losses, we will only use purely reactive components for matching.

Steps

1) Calculate $z_{L}=Z_{L} / Z_{0}$ and plot on Smith chart.
2) Draw circle, centered on Smith chart, through z_{L} point. This circle of constant $|\Gamma|$ includes the locus of all possible $z_{\text {in }}\left(\right.$ and $\left.y_{\text {in }}\right)$ along the transmission line with this load.
3) There are two points (i.e., match point points) on the circle of constant $|\Gamma|$ that intersect the circle where the normalized resistance r is equal to one, i.e., $z_{\mathrm{m}, i}=1 \pm j x_{m}$. In terms of input impedance this is where $Z_{m, i}=Z_{0} \pm j X_{m}$.
4) Find the distance d_{i} from z_{L} to the match points using the "WAVELENGTHS TOWARD GENERATOR" scale.

5) Select one of the match points and add a discrete component (i.e., capacitor or inductor) in series with a reactance $Z_{m}=\mp j X_{m}$. Remember $Z_{\text {cap }}=-j / \omega C$ and $Z_{\text {ind }}=j \omega L$.
6) Now, everywhere toward the generator from this location will see a normalized input impedance $z_{\text {in }}=\left(1 \pm j x_{m}\right) \mp j x_{m}=1$, i.e., $Z_{\text {in }}=Z_{0}$.

