Matching load using a discrete parallel components

• Assume we have a source matched to characteristic impedance Z_0 of the transmission line.

- Therefore, we are seeking to match the load Z_L to Z_0 as well, i.e., we want $Z_{in} = Z_0$.
- To avoid power losses, we will only use purely reactive components for matching.

Steps

- 1) Calculate $z_L = Z_I/Z_0$ and plot on Smith chart.
- 2) Draw circle, centered on Smith chart, through z_L point. This circle of constant $|\Gamma|$ includes the locus of all possible z_{in} (and y_{in}) along the transmission line with this load.
- 3) Go $\lambda/4$ around the circle of constant $|\Gamma|$ from z_L point to y_L point.
- 4) There are two points (i.e., match point points) on the circle of constant $|\Gamma|$ that intersect the circle where the normalized conductance g is equal to one, i.e., $y_{m,i} = 1 \pm jb$. In terms of input admittance this is where $Y_{m,i} = y_{m,i}/Z_0 = 1/Z_0 \pm jB$.
- 5) Find the distance d_i from y_L to the match points using the "WAVELENGTHS TOWARD GENERATOR" scale.

- 6) Select one of the match points and add a discrete component (i.e., capacitor or inductor) in parallel with a susceptance $Y_d = \mp jB$. Remember $Y_{\text{cap}} = j\omega C$ and $Y_{\text{ind}} = -j/\omega L$.
- 7) Now, everywhere toward the generator from this location will see a normalized input admittance of $y_{\text{in}} = y_{\text{m},i} + y_d = (1 \pm jb) \mp jb = 1$ or normalized input impedance $z_{\text{in}} = 1$, i.e., $Y_{\text{in}} = Y_0$ and/or $Z_{\text{in}} = Z_0$.

