Matching load using a discrete parallel components

- Assume we have a source matched to characteristic impedance Z_{0} of the transmission line.

- Therefore, we are seeking to match the load Z_{L} to Z_{0} as well, i.e., we want $Z_{\text {in }}=Z_{0}$.
- To avoid power losses, we will only use purely reactive components for matching.

Steps

1) Calculate $z_{L}=Z_{L} / Z_{0}$ and plot on Smith chart.
2) Draw circle, centered on Smith chart, through z_{L} point. This circle of constant $|\Gamma|$ includes the locus of all possible $z_{\text {in }}\left(\right.$ and $y_{\text {in }}$) along the transmission line with this load.
3) Go $\lambda / 4$ around the circle of constant $|\Gamma|$ from z_{L} point to y_{L} point.
4) There are two points (i.e., match point points) on the circle of constant $|\Gamma|$ that intersect the circle where the normalized conductance g is equal to one, i.e., $y_{\mathrm{m}, i}=1 \pm j b$. In terms of input admittance this is where $Y_{\mathrm{m}, i}=y_{\mathrm{m}, i} / Z_{0}=1 / Z_{0} \pm j B$.
5) Find the distance d_{i} from y_{L} to the match points using the "WAVELENGTHS TOWARD GENERATOR" scale.

6) Select one of the match points and add a discrete component (i.e., capacitor or inductor) in parallel with a susceptance $Y_{d}=\mp j B$. Remember $Y_{\text {cap }}=j \omega C$ and $Y_{\text {ind }}=-j / \omega L$.
7) Now, everywhere toward the generator from this location will see a normalized input admittance of $y_{\mathrm{in}}=y_{\mathrm{m}, i}+y_{d}=(1 \pm j b) \mp j b=1$ or normalized input impedance $z_{\mathrm{in}}=1$, i.e., $Y_{\text {in }}=Y_{0}$ and/or $Z_{\text {in }}=Z_{0}$.

