We are using an air-dielectric 50Ω slotted line to determine an unknown load.

Slotted line with a short circuit termination

Measure adjacent voltage minima at distances $d=90 \mathrm{~cm} \& d=50 \mathrm{~cm}$ from load.

1) Find wavelength and frequency of signal

- Adjacent voltage minima are separated by half a wavelength. Therefore, $\lambda / 2=90-50=40 \mathrm{~cm} \quad \Rightarrow \quad \lambda=\mathbf{8 0} \mathbf{c m}$.
$>$ The frequency is $f=u / \lambda=3 \times 10^{8} / 0.8=375 \times 10^{6} \mathrm{~Hz} \Rightarrow f=\mathbf{3 7 5} \mathbf{~ M H z}$.

Slotted line with a unknown load termination

With an unknown load attached, we measure $V_{\max }=-5 \mathrm{dBmV}$ (multiple locations) and the voltage minima closest to the load as $V_{\min }=-15 \mathrm{dBmV}$ at $d=60 \mathrm{~cm}$.

1) Find VSWR and magnitude of reflection coefficient along slotted line

$>$ Using $V_{\max }=-5 \mathrm{dBmV}=20 \log _{10}\left(V_{\max } / 1 \mathrm{mV}\right)$, we calculate the maximum voltage magnitude $V_{\max }=10^{-5 / 20}(1 \mathrm{mV}) \Rightarrow \boldsymbol{V}_{\max }=\mathbf{0 . 5 6 2} \mathbf{~ m V}$.
$>$ Using $V_{\min }=-15 \mathrm{dBmV}=20 \log _{10}\left(V_{\max } / 1 \mathrm{mV}\right)$, we calculate the minimum voltage magnitude $V_{\min }=10^{-15 / 20}(1 \mathrm{mV}) \quad \Rightarrow \quad \underline{V}_{\min }=\mathbf{0} .178 \mathrm{mV}$.
$>$ By definition, the VSWR $=V_{\max } / V_{\text {min }}=10^{-5 / 20} / 10^{-15 / 20} \Rightarrow \underline{\text { VSWR }}=\underline{\mathbf{3 . 1 6 2}}$.
$>$ Set compass using "SWR (VSWR)" scale at bottom left of Smith chart.
$>$ Use compass to mark "REFL. COEFF., V OR I" scale on bottom right of Smith chart. Read $|\Gamma|=\mathbf{0 . 5 2}$.

2) Find unknown load impedance

$>$ We know that voltage minima occur at the $r_{\text {min }}$ point on circle of constant $|\Gamma|$. Using compass, draw a circle of $|\Gamma|=0.52$. Where the circle crosses the horizontal axis to left of origin, mark $V_{\min }$ point and read $r_{\min }=0.31 \Omega / \Omega$.
> The voltage minima closest to the unknown load is at $d=60 \mathrm{~cm}$. Moving toward the generator, the first location of a voltage minimum for the short circuit termination was $d=90 \mathrm{~cm}$. The distance toward the load from the $V_{\text {min }} / r_{\text {min }}$ point is then $l=|60-90|=30 \mathrm{~cm}$ or $l / \lambda=30 / 80 \Rightarrow l / \lambda=\mathbf{0 . 3 7 5}$.
$>$ As the horizontal axis for $V_{\min } / r_{\text {min }}$ point is at 0 on the "WAVELENGTHS TOWARD LOAD" scale, draw a radial line from the center of the Smith chart through 0.375 on the "WAVELENGTHS TOWARD LOAD" scale.
> Where the radial line intersects the $|\Gamma|=0.52$ circle, read/interpolate values of normalized load resistance and reactance as $\underline{r}_{\underline{r_{L}}}=0.58$ and $\underline{x}_{\underline{L}}=0.82$.
$>$ Put together to get normalized load impedance $\underline{z}_{L}=\mathbf{0 . 5 8 + i \mathbf { 0 . 8 2 } \Omega / \Omega}$.
$>$ Find load impedance by multiplying z_{L} by characteristic impedance Z_{0} to get $Z_{L}=z_{L} Z_{0}=(0.58+j 0.82) 50 \Rightarrow \underline{Z}_{\underline{L}}=\mathbf{2 9}+\boldsymbol{j} \mathbf{4 1} \boldsymbol{\Omega}$.

Simple Smith Chart

