

For the lossless transmission line circuits above: $f=1 \mathrm{GHz}, u=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, Z_{0}=$ 50Ω, and the transmission line has length $l_{\text {tape }}=63.6 \mathrm{~cm}$ as measured by a tape measure. The wavelength is calculated to be $\lambda=u / f=3 \times 10^{8} / 1 \times 10^{9}=30 \mathrm{~cm}$.

Open Circuit Termination

For an open circuit, we know $z_{O C}=Z_{O C} \rightarrow \infty$ and $\Gamma_{O C}=1$. For the left hand circuit, an input impedance of $Z_{\mathrm{in}, \mathrm{OC}}=-j 50 \Omega$ is measured.

1) Normalize and plot open circuit termination input impedance

Normalize $z_{\mathrm{in}, \mathrm{OC}}=Z_{\mathrm{in}, \mathrm{OC}} / Z_{0}=(-j 50) / 50 \Rightarrow \underline{z}_{\mathrm{in}, \mathrm{OC}}=-\mathrm{j} \mathbf{1} \Omega / \Omega$.
Plot $z_{\mathrm{in} \text {, Oc }}$ on Smith chart by finding the intersection of the $r=0$ circle (outer edge) with the $x=-1$ arc.

2) Find length of transmission line

> Use straight-edge to draw radial line from center of Smith chart through $z_{\text {in,oc }}$ and outer rings of Smith chart. Where the radial line crosses the "WAVELENGTHS TOWARD LOAD" scale reads 0.125 .
> The $z_{o c} \rightarrow \infty$ point, on the right edge of the Smith chart, reads 0.25 on the "WAVELENGTHS TOWARD LOAD" scale. The distance toward the load from $z_{\text {in, oc }}$ is then $l=(0.25-0.125) \lambda+n \lambda / 2=0.125 \lambda+n \lambda / 2$.

- Using $\lambda=30 \mathrm{~cm}$, the transmission line length must be $l=3.75+n 15 \mathrm{~cm}$. When $n=4, l=3.75+(4) 15 \Rightarrow \underline{\underline{l}}=\mathbf{6 3 . 7 5} \mathrm{cm}$, quite close to $l_{\text {tape }}=63.6 \mathrm{~cm}$.

Unknown Load Termination

For the right hand circuit, an input impedance of $Z_{\text {in }}=10 \Omega$ is measured.

1) Normalize and plot unknown load input impedance

Normalize $z_{\text {in }}=Z_{\text {in }} / Z_{0}=10 / 50 \Rightarrow \underline{z}_{\text {in }}=\mathbf{0 . 2} \boldsymbol{\Omega} / \boldsymbol{\Omega}$.
Plot z_{in} on Smith chart by finding the intersection of the $r=0.2$ circle with the $x=0$ arc/line (i.e., horizontal/real axis).

2) Find unknown load impedance

> Note that horizontal axis passes through $z_{i n}$ where the "WAVELENGTHS TOWARD LOAD" scale reads 0 .
$>$ Draw a radial line from the center of the Smith chart through 0.125 (i.e., the TL length) on the "WAVELENGTHS TOWARD LOAD" scale.
$>$ Draw an arc, centered on Smith chart, through $z_{i n}$ that connects it to the radial line at 0.125 on "WAVELENGTHS TOWARD LOAD" scale.
> Read/interpolate value of normalized load resistance at intersection of arc and line as $\underline{r}_{L}=0.385$.
> Read/interpolate value of normalized load reactance at intersection of arc and line as $x_{L}=-0.925$.
Put together to get normalized load impedance $\underline{z}_{L}=\mathbf{0 . 3 8 5}-j \mathbf{0 . 9 2 5} \Omega / \mathbf{\Omega}$.
Find load impedance by multiplying z_{L} by characteristic impedance Z_{0} to get $Z_{L}=z_{L} Z_{0}=(0.385-j 0.925) 50 \Rightarrow \underline{Z}_{\underline{L}}=\mathbf{1 9 . 2 5 - j} \mathbf{4 6 . 2 5} \Omega$.

Suoersectes G.A. Form 5301.7560 N
IMPEDANCE OR ADMITTANCE COORDINATES

