

For the lossless transmission line circuits above: f = 1 GHz, $u = 3 \times 10^8$ m/s, $Z_0 = 50 \Omega$, and the transmission line has length $l_{\text{tape}} = 63.6$ cm as measured by a tape measure. The wavelength is calculated to be $\lambda = u/f = 3 \times 10^8 / 1 \times 10^9 = 30$ cm.

Open Circuit Termination

For an open circuit, we know $z_{OC} = Z_{OC} \rightarrow \infty$ and $\Gamma_{OC} = 1$. For the left hand circuit, an input impedance of $Z_{in,OC} = -j50 \Omega$ is measured.

1) Normalize and plot open circuit termination input impedance

- ► Normalize $z_{in,OC} = Z_{in,OC} / Z_0 = (-j 50) / 50 \implies \underline{z_{in,OC}} = -j 1 \Omega / \Omega$.
- ▶ Plot $z_{in,OC}$ on Smith chart by finding the intersection of the r=0 circle (outer edge) with the x=-1 arc.

2) Find length of transmission line

- ▷ Use straight-edge to draw radial line from center of Smith chart through $z_{in,OC}$ and outer rings of Smith chart. Where the radial line crosses the "WAVELENGTHS TOWARD LOAD" scale reads 0.125.
- ➤ The $z_{OC} \rightarrow \infty$ point, on the right edge of the Smith chart, reads 0.25 on the "WAVELENGTHS TOWARD LOAD" scale. The distance toward the load from $z_{in,OC}$ is then $l = (0.25 0.125)\lambda + n\lambda/2 = 0.125\lambda + n\lambda/2$.
- → Using $\lambda = 30$ cm, the transmission line length must be l = 3.75 + n15 cm. When n=4, $l=3.75 + (4)15 \Rightarrow l=63.75$ cm, quite close to $l_{tape} = 63.6$ cm.

Unknown Load Termination

For the right hand circuit, an input impedance of $Z_{in} = 10 \Omega$ is measured.

1) Normalize and plot unknown load input impedance

- > Normalize $z_{in} = Z_{in} / Z_0 = 10 / 50 \implies \underline{z_{in}} = 0.2 \Omega / \Omega$.
- ▶ Plot z_{in} on Smith chart by finding the intersection of the r = 0.2 circle with the x = 0 arc/line (i.e., horizontal/real axis).

2) Find unknown load impedance

- > Note that horizontal axis passes through z_{in} where the "WAVELENGTHS TOWARD LOAD" scale reads 0.
- Draw a radial line from the center of the Smith chart through 0.125 (i.e., the TL length) on the "WAVELENGTHS TOWARD LOAD" scale.
- > Draw an arc, centered on Smith chart, through z_{in} that connects it to the radial line at 0.125 on "WAVELENGTHS TOWARD LOAD" scale.
- ▶ Read/interpolate value of normalized load resistance at intersection of arc and line as $r_L = 0.385$.
- ▶ Read/interpolate value of normalized load reactance at intersection of arc and line as $x_L = -0.925$.
- > Put together to get <u>normalized</u> load impedance $\underline{z_L} = 0.385 j0.925 \Omega/\Omega$.
- Find load impedance by multiplying z_L by characteristic impedance Z_0 to get $Z_L = z_L Z_0 = (0.385 j0.925) 50 \implies \underline{Z_L} = 19.25 j 46.25 \Omega$.

