

For the lossless transmission line circuit above, the frequency, length, and phase velocity will be left unspecified while $Z_{0}=75 \Omega$ and $Z_{L}=56.25-j 75 \Omega$.

1) Normalize and plot load impedance

$>$ Normalize $z_{L}=Z_{L} / Z_{0}=(56.25-j 75) / 75 \quad \Rightarrow \underline{z}_{\underline{z}}=\mathbf{0 . 7 5 - j} \mathbf{1} \Omega / \mathbf{\Omega}$.
$>$ Plot z_{L} on Smith chart by finding the intersection of the $r=0.75$ circle with the $x=-1$ arc.

2) Find load reflection coefficient and VSWR (method 1)

$>$ Set compass to distance between center of Smith chart and z_{L}. Use "REFL. COEFF. V or l" scale at bottom right to determine $\Gamma_{L} \mid=0.5$.
$>$ Use compass to draw $|\Gamma|=0.5$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read VSWR = 3.1.
> Use straight-edge to draw radial line from center of Smith chart through z_{L} and outer rings of Smith chart. Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{\underline{L}}=-74^{\circ}$.
$>$ Put magnitude and angle together to get $\underline{\Gamma}_{L}=\mathbf{0 . 5} \angle-74^{\circ}$. For comparison, the analytic result is $\Gamma_{L}=0.5114 \angle-74.29^{\circ}$.

3) Find VSWR (method 2)

Draw a circle, centered on Smith chart, through z_{L}.
Read value of normalized resistance r where the $|\Gamma|=0.5$ circle crosses the horizontal/real axis to the right of the origin to get $\underline{\underline{r}}_{\underline{\max }}=$ VSWR $=\mathbf{3 . 1}$.

4) Find load admittance

> Use straight-edge to draw line from edge-to-edge of Smith chart through center of Smith chart and z_{L} point.
$>$ Where the line intersects the $|\Gamma|=0.5$ circle on the side opposite to z_{L}, locate and read/interpolate value of appropriate " g " circle as $g_{\underline{L}}=0.48$.
$>$ Where the line intersects the $|\Gamma|=0.5$ circle on the side opposite to z_{L}, locate and read/interpolate value of appropriate " b " arc as $\underline{b_{L}}=0.64$.
$>$ Put together to get normalized load admittance $\boldsymbol{y}_{\underline{L}}=\mathbf{0 . 4 8}+\boldsymbol{j} \mathbf{0 . 6 4} \mathbf{~} / \mathbf{S}$.
$>$ Find load admittance by dividing y_{L} by characteristic impedance Z_{0} to get $Y_{L}=y_{L} / Z_{0}=(0.48+j 0.64) / 75 \Rightarrow \underline{\boldsymbol{Y}}_{\underline{L}}=\mathbf{0 . 0 0 6 4}+\boldsymbol{j} \mathbf{0 . 0 0 8 3} \mathbf{S}=\mathbf{6 . 4}+\boldsymbol{i} 8.3 \mathbf{~ m S}$.

5) Find/locate voltage and impedance maxima

$>$ The impedance maxima occurs where the $|\Gamma|=0.5$ circle crosses the real axis to the right of origin. Read/interpolate " r " circles to get $\underline{\underline{\max }}=\mathbf{3 . 1}$.
$>$ The maximum impedance along the transmission line is found by multiplying $r_{\max } \mathrm{w} / Z_{0}$ to get $Z_{\max }=Z_{0} z_{\max }=75(3.1) \quad \Rightarrow \underline{\boldsymbol{Z}}_{\max }=\mathbf{2 3 2 . 5} \boldsymbol{\Omega}$.
$>$ The voltage maxima along the transmission line occur at $r_{\text {max }}$. Starting where the radial line through z_{L} crosses the "WAVELENGTHS TOWARD GENERATOR" scale at 0.352 , move toward the generator to the real axis to the right of origin ($r_{\text {max }}$ location) where the scale reads 0.25 . The total distance is $(0.5-0.352) \lambda+0.25 \lambda=0.398 \lambda$.
$>$ As everything repeats at $\lambda / 2$ intervals on lossless TLs, the voltage maxima locations in distance from the load are $\underline{\underline{m a x}}^{\underline{=0}} \mathbf{0 . 3 9 8 \lambda + n \lambda / 2}$.

5) Find/locate voltage and impedance minima

$>$ The impedance minima occurs where the $|\Gamma|=0.5$ circle crosses the real axis to the left of origin. Read/interpolate " r " circles to get $\underline{\boldsymbol{r}}_{\underline{\min }}=\mathbf{0 . 3 2 5}$.
$>$ The minimum impedance along the transmission line is found by multiplying $r_{\min } \mathrm{w} / Z_{0}$ to get $Z_{\min }=Z_{0} z_{\min }=75(0.325) \Rightarrow \underline{\boldsymbol{Z}}_{\min }=\mathbf{2 4 . 3 7 5 \Omega}$.
$>$ The voltage minima along the transmission line occur at $r_{\text {min }}$. Starting where the radial line through z_{L} crosses the "WAVELENGTHS TOWARD GENERATOR" scale at 0.352 , move toward the generator to the real axis to the left of origin ($r_{\text {min }}$ location) where the scale reads 0.5 . The total distance is $(0.5-0.352) \lambda=0.148 \lambda$.
$>$ As everything repeats at $\lambda / 2$ intervals, the voltage minima locations in

