

For the lossless transmission line circuit shown: f = 500 MHz, $u = 2 \times 10^8 \text{ m/s}$, l = 1.242 m, $Z_0 = 75 \Omega$, and $\Gamma_{\text{in}} = 0.8 \angle -117.5^\circ$.

1) Plot input reflection coefficient and find VSWR

- Use straight edge to draw radial line from center of Smith chart through the -117.5° mark on the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale.
- ► Use "REFL. COEFF. V or I" scale at bottom right to set compass to $|\Gamma| = 0.8$, and draw arc, centered on Smith chart, through -117.5° radial line.
- > The intersection of radial line & arc marks $\underline{\Gamma_{in}} = 0.8 \angle -117.5^{\circ}$.
- → Use compass to draw $|\Gamma| = 0.8$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read <u>VSWR = 9</u>.

2) Find input impedance

- At $\Gamma_{in} = 0.8 \angle -117.5^{\circ}$ point, locate and read/interpolate value of appropriate "*r*" circle as <u> $r_{in} = 0.15$ </u>.
- At $\Gamma_{in} = 0.8 \angle -117.5^{\circ}$ point, locate and read/interpolate value of appropriate "x" arc as $\underline{x_{in}} = -0.60$.
- > Put together to get <u>normalized</u> input impedance $\underline{z_{in}} = 0.15 j 0.60 \Omega/\Omega$.
- Find input impedance by multiplying z_{in} w/ characteristic impedance to get Z_{in} = Z₀ z_{in} = 75(0.15−j0.60) ⇒ <u>Z_{in} = 11.25−j45 Ω</u>.

3) Find load reflection coefficient

- Calculate $l/\lambda = lf/u = 1.242(500 \times 10^6)/2 \times 10^8 = 3.105$. Subtract 6(0.5) = 3 (i.e., remove integer multiples of $n\lambda/2$) to get $\Rightarrow l/\lambda = 0.105$.
- \blacktriangleright Leave compass set to $|\Gamma| = 0.8$ and draw circle centered on Smith chart.
- ► Using radial line for $\angle \Gamma_{in} = -117.5^{\circ}$, read 0.087 on the "WAVELENGTHS TOWARD LOAD" scale. Add 0.087 + l/λ to get 0.192 and draw a radial line from the center of the Smith chart through this point on the scale.
- ➤ Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_L = -41.6^\circ$.
- > Put magnitude and angle together to get $\underline{\Gamma_L} = 0.8 \angle -41.6^\circ$.

4) Find load impedance

- At $\Gamma_L = 0.8 \angle -41.6^\circ$ point, locate and read/interpolate value of appropriate "*r*" circle as <u> $r_L = 0.8$ </u>.
- At $\Gamma_L = 0.8 \angle -41.6^\circ$ point, locate and read/interpolate value of appropriate "x" arc as $\underline{x_L} = -2.4$.
- > Put together to get <u>normalized</u> load impedance $\underline{z_L} = 0.8 j 2.4 \Omega/\Omega$.
- Find load impedance by multiplying z_L w/ characteristic impedance to get $Z_L = Z_0 z_L = 75(0.8 j2.4) \implies \underline{Z_L} = 60 j180 \Omega$.

