

For the lossless transmission line circuit shown: $f=500 \mathrm{MHz}, u=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$, $l=1.242 \mathrm{~m}, Z_{0}=75 \Omega$, and $\Gamma_{\text {in }}=0.8 \angle-117.5^{\circ}$.

1) Plot input reflection coefficient and find VSWR

Use straight edge to draw radial line from center of Smith chart through the -117.5° mark on the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale.
Use "REFL. COEFF. V or I" scale at bottom right to set compass to $|\Gamma|=$ 0.8 , and draw arc, centered on Smith chart, through -117.5° radial line.
$>$ The intersection of radial line \& arc marks $\underline{\Gamma}_{\text {in }}=0.8 \angle-117.5^{\circ}$.
> Use compass to draw $|\Gamma|=0.8$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read VSWR =9.

2) Find input impedance

$>$ At $\Gamma_{\text {in }}=0.8 \angle-117.5^{\circ}$ point, locate and read/interpolate value of appropriate " r " circle as $\underline{r}_{\text {in }}=0.15$.
$>$ At $\Gamma_{\text {in }}=0.8 \angle-117.5^{\circ}$ point, locate and read/interpolate value of appropriate " x " arc as $x_{\text {in }}=-0.60$.
$>$ Put together to get normalized input impedance $\underline{z}_{\underline{i n}}=\mathbf{0 . 1 5}-\mathbf{j 0 . 6 0} \Omega / \boldsymbol{\Omega}$.
$>$ Find input impedance by multiplying $z_{\mathrm{in}} \mathrm{w} /$ characteristic impedance to get $Z_{\text {in }}=Z_{0} z_{\text {in }}=75(0.15-j 0.60) \Rightarrow \underline{\boldsymbol{Z}}_{\text {in }}=\mathbf{1 1 . 2 5 - \boldsymbol { j } 4 5 \Omega}$.

3) Find load reflection coefficient

\rightarrow Calculate $l / \lambda=l f / u=1.242\left(500 \times 10^{6}\right) / 2 \times 10^{8}=3.105$. Subtract $6(0.5)=3$ (i.e., remove integer multiples of $n \lambda / 2$) to get $\Rightarrow \underline{l / \lambda}=\underline{0.105}$.

Leave compass set to $|\Gamma|=0.8$ and draw circle centered on Smith chart.
$>$ Using radial line for $\angle \Gamma_{\text {in }}=-117.5^{\circ}$, read 0.087 on the "WAVELENGTHS TOWARD LOAD" scale. Add $0.087+l / \lambda$ to get 0.192 and draw a radial line from the center of the Smith chart through this point on the scale.
$>$ Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{\underline{L}}=-41.6^{\circ}$.
Put magnitude and angle together to get $\Gamma_{\underline{L}}=\mathbf{0 . 8} \angle-\mathbf{4 1 . 6 ^ { \circ }}$.

4) Find load impedance

$>$ At $\Gamma_{L}=0.8 \angle-41.6^{\circ}$ point, locate and read/interpolate value of appropriate " r " circle as $\underline{r}_{\underline{L}}=0.8$.
$>$ At $\Gamma_{L}=0.8 \angle-41.6^{\circ}$ point, locate and read/interpolate value of appropriate " x " arc as $x_{\underline{L}}=-2.4$.
$>$ Put together to get normalized load impedance $\underline{z}_{\underline{L}}=\mathbf{0 . 8}-\boldsymbol{j} \mathbf{2} .4 \boldsymbol{\Omega} / \boldsymbol{\Omega}$.
$>$ Find load impedance by multiplying $z_{L} \mathrm{w} /$ characteristic impedance to get $Z_{L}=Z_{0} z_{L}=75(0.8-j 2.4) \quad \Rightarrow \underline{\boldsymbol{Z}}_{\underline{L}}=\mathbf{6 0}-\mathbf{j} \mathbf{1 8 0} \Omega$.

