

For the lossless transmission line circuit shown: $f=100 \mathrm{MHz}, u=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, $l=3.3 \mathrm{~m}, Z_{0}=50 \Omega$, and $Z_{L}=75+j 50 \Omega$.

1) Normalize and plot load impedance

$>$ Normalize $z_{L}=Z_{L} / Z_{0}=(75+j 50) / 50 \Rightarrow \underline{z_{L}}=\mathbf{1 . 5}+j \mathbf{1} \Omega / \Omega$.
Plot z_{L} on Smith chart by finding intersection of $r=1.5$ circle with $x=1$ arc.

2) Find load reflection coefficient and VSWR

$>$ Set compass to distance between center of Smith chart and z_{L}. Use compass to mark the "REFL. COEFF. V or I" scale at bottom right of Smith chart to determine $\left\lfloor\Gamma_{\underline{L}}\right\rfloor=0.42$.
$>$ Use compass to draw $|\Gamma|=0.42$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read VSWR = 2.4.
$>$ Use straight-edge to draw radial line from center of Smith chart through z_{L} and outer rings of Smith chart. Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{L}=41.8^{\circ}$.

Put magnitude and angle together to get $\underline{\Gamma}_{\underline{L}}=\mathbf{0 . 4 2} \angle \mathbf{4 1 . 8}{ }^{\circ}$. For comparison, the analytic result is $\Gamma_{L}=0.4152 \angle 41.63^{\circ}$.

3) Find input reflection coefficient

Calculate $l / \lambda=l f / u=3.3\left(100 \times 10^{6}\right) / 3 \times 10^{8}=1.1$. Subtract $2(0.5)=1$ (i.e., remove integer multiples of $n \lambda / 2$) to get $\Rightarrow \underline{l / \lambda} \equiv \underline{0} \underline{1}$.
$>$ On the Smith chart, the radial line through z_{L} reads 0.192 on the "WAVELENGTHS TOWARD GENERATOR" scale. Add $0.192+l / \lambda$ to get 0.292 and draw a radial line from the center of the Smith chart through this point on the scale.

Draw an arc, centered on Smith chart, from z_{L} through radial line at 0.292. The intersection of the arc and radial line is the $\Gamma_{\mathrm{in}} / z_{\mathrm{in}}$ point. Use the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{i \underline{i n}}=-30.2^{\circ}$ and note $\left|\Gamma_{i n}\right|=\left|\Gamma_{\underline{L}}\right|=0.42$.
$>$ Put magnitude and angle together to get $\Gamma_{\text {in }}=\mathbf{0 . 4 2} \angle \mathbf{- 3 0 . 2}{ }^{\circ}$.

4) Find input impedance

$>$ At $\Gamma_{\text {in }}=0.42 \angle-30.2^{\circ}$ point, locate and read/interpolate value of appropriate " r " circle as $\underline{r}_{\text {in }}=1.8$.
$>$ At $\Gamma_{\mathrm{in}}=0.42 \angle-30.2^{\circ}$ point, locate and read/interpolate value of appropriate " x " arc as $\underline{x}_{\text {in }}=-0.92$.
$>$ Put together to get normalized input impedance $\underline{z}_{\text {in }}=\mathbf{1 . 8}-\boldsymbol{j} \mathbf{0 . 9 2 \Omega} \Omega \mathbf{\Omega}$.
$>$ Find input impedance by multiplying $z_{\text {in }} \mathrm{w} /$ characteristic impedance to get $Z_{\text {in }}=Z_{0} z_{\text {in }}=50(1.8-j 0.92) \Rightarrow \underline{\boldsymbol{Z}}_{\text {in }}=90-\boldsymbol{j} 46 \Omega$.

