

For the lossless transmission line circuit shown: f = 100 MHz, $u = 3 \times 10^8 \text{ m/s}$, l = 3.3 m, $Z_0 = 50 \Omega$, and $Z_L = 75 + j 50 \Omega$.

1) Normalize and plot load impedance

- → Normalize $z_L = Z_L / Z_0 = (75 + j50) / 50 \implies \underline{z_L} = 1.5 + j1 \Omega / \Omega$.
- ▶ Plot z_L on Smith chart by finding intersection of r = 1.5 circle with x = 1 arc.

2) Find load reflection coefficient and VSWR

- Set compass to distance between center of Smith chart and z_L . Use compass to mark the "REFL. COEFF. V or I" scale at bottom right of Smith chart to determine $|\Gamma_L| = 0.42$.
- → Use compass to draw $|\Gamma| = 0.42$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read <u>VSWR = 2.4</u>.
- → Use straight-edge to draw radial line from center of Smith chart through z_L and outer rings of Smith chart. Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_L = 41.8^\circ$.
- > Put magnitude and angle together to get $\underline{\Gamma_L} = 0.42 \angle 41.8^\circ$. For comparison, the analytic result is $\Gamma_L = 0.4152 \angle 41.63^\circ$.

3) Find input reflection coefficient

- Calculate $l/\lambda = lf/u = 3.3 (100 \times 10^6)/3 \times 10^8 = 1.1$. Subtract 2(0.5) = 1 (i.e., remove integer multiples of $n\lambda/2$) to get $\Rightarrow l/\lambda = 0.1$.
- ▷ On the Smith chart, the radial line through z_L reads 0.192 on the "WAVELENGTHS TOWARD GENERATOR" scale. Add 0.192 + l/λ to get 0.292 and draw a radial line from the center of the Smith chart through this point on the scale.

- ➤ Draw an arc, centered on Smith chart, from z_L through radial line at 0.292. The intersection of the arc and radial line is the Γ_{in} / z_{in} point. Use the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{in} = -30.2^{\circ}$ and note $|\Gamma_{in}| = |\Gamma_L| = 0.42$.
- > Put magnitude and angle together to get $\underline{\Gamma_{in}} = 0.42 \angle -30.2^{\circ}$.

4) Find input impedance

- At $\Gamma_{in} = 0.42 \angle -30.2^{\circ}$ point, locate and read/interpolate value of appropriate "*r*" circle as <u> $r_{in} = 1.8$ </u>.
- At $\Gamma_{in} = 0.42 \angle -30.2^{\circ}$ point, locate and read/interpolate value of appropriate "x" arc as $\underline{x_{in} = -0.92}$.
- > Put together to get <u>normalized</u> input impedance $\underline{z_{in}} = 1.8 j 0.92 \Omega/\Omega$.
- Find input impedance by multiplying z_{in} w/ characteristic impedance to get Z_{in} = Z₀ z_{in} = 50(1.8−j0.92) ⇒ <u>Z_{in} = 90−j46 Ω</u>.

