1) Plot reflection coefficient $\Gamma=0.707 \angle-45^{\circ}$ for a 50Ω transmission line

Use straight edge to draw radial line from center of Smith chart through the -45° mark on "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale (inner ring surrounding Smith chart).
$>$ Use "REFL. COEFF. V or I" scale at bottom right of chart to set compass to $|\Gamma|=0.707$, and draw arc, centered on Smith chart, through -45° radial line.
$>$ The intersection of radial line $\&$ arc marks $\Gamma=0.707 \angle-45^{\circ}$ on Smith chart.
2) Read normalized impedance z corresponding to $\Gamma=0.707 \angle-45^{\circ}$
$>$ On Smith chart, at $\Gamma=0.707 \angle-45^{\circ}$ point, locate and read/interpolate value of appropriate " r " circle (family of circles centered on horizontal axis and with values shown on horizontal axis) as $\boldsymbol{r = 1}$.
$>$ On Smith chart, at $\Gamma=0.707 \angle-45^{\circ}$ point, locate and read/interpolate value of appropriate " x " arc (reactance values shown on inside of outer ring of Smith chart; values above horizontal axis are positive/inductive while those below are negative/capacitive) as $\boldsymbol{x = \mathbf { - 2 }}$.

Put together to get normalized impedance $\underline{z=1-\boldsymbol{j} 2 \Omega / \Omega}$.
$>$ Find impedance corresponding to $\Gamma=0.707 \angle-45^{\circ}$ by multiplying $z \mathrm{w} /$ characteristic impedance to get $Z=Z_{0} z=50(1-j 2) \Rightarrow \underline{\boldsymbol{Z}}=\mathbf{5 0}-\boldsymbol{j} \mathbf{1 0 0} \Omega$.
3) Read standing wave ratio SWR (VSWR) corresponding to $\Gamma=0.707 \angle-45^{\circ}$
$>$ Use "REFL. COEFF. V or I" scale at bottom right to set your compass to $|\Gamma|$ $=0.707$.
$>$ Draw 0.707 arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left.
$>$ Read standing wave ratio to be $\underline{\text { VSWR }=5.8}$.

