- 11.52 A 50 Ω air-filled line is terminated in a mismatched load of $40 + j25 \Omega$. Find the shortest distance from the load at which the voltage has the smallest magnitude.
 - Use Smith chart. Also, find the load reflection coefficient, SWR, and shortest distance from the load to where the voltage has the largest magnitude. Distances are in terms of λ .
 - Calculate the normalized load impedance $z_L = Z_L / Z_0 = (40 + j25) / 50$ $\Rightarrow z_L = 0.8 + j0.5 \Omega/\Omega$. Plot z_L on Smith chart.
 - \triangleright Use compass to draw a circle through z_L , centered on Smith chart. Use a straight edge to draw radial line from center of Smith chart through z_L to outer rings of Smith chart.
 - Move in the "WAVELENGTHS TOWARD GENERATOR" direction on the circle of constant $|\Gamma|$ from z_L point at 0.1163 to r_{\min} point/ V_{\min} point at 0.5. Shortest distance from load to V_{\min} point is $d_{V\min}/\lambda = 0.5 0.1163$ $\Rightarrow d_{V\min} = 0.3837\lambda$.
 - ► Use the "ANGLE OF REFLECTION COEFFICIENT IN DEGREES" scale to read $\angle \Gamma_L = 96.3^\circ$.
 - ► Use compass (same setting) to mark the "SWR (VSWR)" and "REFL. COEFF, V or I" scales. Read off $|\Gamma| = 0.29$ and \Rightarrow SWR = 1.81.
 - Put the magnitude and angle of the load reflection coefficient together to get $\Rightarrow \Gamma = \Gamma_L = 0.29 \angle 96.3^{\circ}$.
 - ► Last, move in the "WAVELENGTHS TOWARD GENERATOR" direction on the circle of constant |Γ| from z_L point @ 0.1163 to r_{max} point/ V_{max} point @ 0.25. The shortest distance from load to V_{max} is $d_{V_{\text{max}}}/\lambda = 0.25 0.1163$ \Rightarrow $d_{V_{\text{max}}} = 0.1337\lambda$.

