EE 381 Electric & Magnetic Fields Examination #3 (Fall 2xxx)

Name <u>Example</u>

Instructions: Place answers in indicated spaces. Use notation as given in class for coordinates and vectors. **Show all work for full credit**. Attach equation sheet and hand-in with exam.

1) A solid sphere (radius *a*) composed of a perfect electrical conductor (PEC) is embedded in a dielectric material where $\varepsilon = 4.2\varepsilon_0$. If the PEC sphere supports an evenly distributed surface charge density of $\rho_s = 59.5 \text{ nC/m}^2$, find the electric field \overline{E} and electric flux density vector \overline{D} just inside the sphere (i.e., $r = a^-$) and outside the sphere (i.e., $r = a^+$).

2) For the spherical capacitor shown, the region between the conductors (a < r < b) is filled with a dielectric $\varepsilon = \varepsilon_r \varepsilon_0$. If the center conductor supports an evenly distributed charge of -Q, the electric flux density vector is $\overline{D} = -\hat{a}_r \frac{Q}{4\pi r^2}$ for a < r < b. Calculate the polarization vector \overline{P} and bound volume charge density ρ_{pv} for a < r < b. Also, find the bound surface charge density ρ_{ps} on the interior and exterior surfaces of the dielectric (i.e., $r = a^+$ and $r = b^-$).

$$\overline{P} = -\hat{a}_r \frac{Q}{4\pi r^2} \left(1 - \frac{1}{\varepsilon_r} \right) \qquad \qquad \rho_{pv} = \underline{0}$$

$$\rho_{ps}(r = a^+) = \frac{Q}{4\pi a^2} \left(1 - \frac{1}{\varepsilon_r} \right) \qquad \qquad \rho_{ps}(r = b^-) = \frac{-Q}{4\pi b^2} \left(1 - \frac{1}{\varepsilon_r} \right)$$

2) A current distribution yields a vector magnetic potential of $\overline{A} = 4xy\hat{a}_x + 6xy\hat{a}_y - 9z\hat{a}_z$ (Wb/m). Find the magnetic flux density and magnetic field if $\mu = \mu_0$. Also, find the magnetic flux upward through the surface defined by z = 10 m, $-1 \text{ m} \le x \le 0$, and $0 \le y \le 1.2$ m.

$$\bar{H} = \hat{a}_z (4.775y - 3.183x) \text{ MA/m}$$

$$\overline{B} = \hat{a}_z (6y - 4x) \text{ Wb/m}^2$$

Magnetic flux = <u>6.72 Wb</u>____

3) A length *L* of coaxial line has charge *Q* on the inner conductor (radius a = 2 mm) and charge -Q on the outer conductor (radius b = 6 mm) yielding an electric flux density $\overline{D} = \hat{a}_{\rho} \frac{Q}{2\pi L \rho}$ for $a < \rho < b$.

The region between the conductors is filled with a lossy dielectric ($\varepsilon = 3\varepsilon_0$ and $\sigma = 2 \times 10^{-6}$ S/m). Find the capacitance and resistance between the conductors of the coaxial line if L = 12 m.

$C = _1.823 \text{ nF}_$ $R = _7285.4 \Omega_$