EE 381 Electric and Magnetic Fields Quiz #5 (Fall 2025)

Name Key A

Instructions: Closed book & notes. Place answers in indicated spaces and show all work for full/partial credit.

Useful equations: $d\overline{l} = dx \ \hat{a}_x + dy \ \hat{a}_y + dz \ \hat{a}_z = d\rho \ \hat{a}_\rho + \rho d\phi \ \hat{a}_\phi + dz \ \hat{a}_z = dr \ \hat{a}_r + r \ d\theta \ \hat{a}_\theta + r \sin\theta \ d\phi \ \hat{a}_\phi$

The path C goes radially from the origin to point $A(3 \text{ m}, 1.5\pi, 0)$ on the -y-axis and then on an arc of constant radius from point A to point B(3 m, 0, 0) on the +x-axis in the direction of increasing ϕ .

a) Sketch, with labels, the path C.

b) For the vector field $\overline{L} = -7\rho \sin\phi \hat{a}_{\rho} + 2\rho \hat{a}_{\phi} + 6z\hat{a}_{z}$ (Lemurs/m), compute $\overline{L} \cdot d\overline{l}$.

c) Calculate the line integral
$$\int_{L}^{L} d\bar{l} = \frac{-7psin0dp + 2p^2dp + 62dz}{L \cdot d\bar{l}} = \int_{A}^{A} L \cdot d\bar{l}$$

Lemin M $\begin{pmatrix} z = 1.5\pi \\ \bar{z} = 0 \end{pmatrix}$ $\begin{pmatrix} z = 3m, \\ z = 0 \end{pmatrix}$

$$\int_{C}^{C} L \cdot d\bar{l} = \int_{C}^{3} -7psih0dp + 2p^2dp + 62dz$$

$$p = 0 \quad sin15\pi = -1$$

$$+ \int_{C}^{2} -7psin0dp + 2p^2dp + 62dz$$

$$p = 0 \quad sin15\pi = -1$$

$$+ \int_{C}^{2} -7psin0dp + 2p^2dp + 62dz$$

$$p = 0 \quad sin15\pi = -1$$

$$+ \int_{C}^{2} -7psin0dp + 2p^2dp + 62dz$$

$$= 1.5\pi$$

$$= +7 \cdot \frac{2^2}{2^2} \cdot \frac{3}{2^2} + 2(9) \cdot \frac{12\pi}{1.5\pi} = \frac{7}{2^2}(9-0) + 18(2\pi-1.5\pi)$$

$$= \frac{57}{2^2} \cdot \frac{774}{2^2} \cdot \frac{15\pi}{15\pi} = \frac{57}{2^2} \cdot \frac{774}{15\pi} \cdot \frac{15\pi}{15\pi}$$

EE 381 Electric and Magnetic Fields Quiz #5 (Fall 2025)

Name Key B

Instructions: Closed book & notes. Place answers in indicated spaces and show all work for full/partial credit.

Useful equations: $d\overline{l} = dx \, \hat{a}_x + dy \, \hat{a}_y + dz \, \hat{a}_z = d\rho \, \hat{a}_\rho + \rho d\phi \, \hat{a}_\phi + dz \, \hat{a}_z = dr \, \hat{a}_r + r \, d\theta \, \hat{a}_\theta + r \sin\theta \, d\phi \, \hat{a}_\phi$

The path L goes radially from the origin to point $A(3 \text{ m}, 0.5\pi, 0)$ on the +y-axis and then on an arc of constant radius from point A to point B(3 m, π , 0) on the -x-axis in the direction of increasing ϕ .

Sketch, with labels, the path L.

0.5T -> 90° from +x-axis T -> 180° from +x-axis

b) For the vector field $\overline{M} = 5\rho \sin\phi \hat{a}_{\rho} - 6\rho \hat{a}_{\phi} - 4z \hat{a}_{z}$ (Meerkats/m), compute $\overline{M} \cdot d\overline{l}$.

m.di=(5p5:n@ap-6pag-4zaz) · (dpap+pdøaø+dzaz)

M.dī = 5 psind dp - 6 p2 dp - 42 dz (Meer Kuts)

c) Calculate the line integral $\int_{L} \overline{M} \cdot d\overline{l} = \int_{0}^{A} \overline{M} \cdot d\overline{l} + \int_{A}^{B} \overline{M} \cdot d\overline{l}$ Mean Kats $(B = 0.5\pi)$ $(B = 0.5\pi)$ (B = 3m)

 $\int_{L}^{m} d\bar{x} = \int_{p=0}^{sm} 5p sih \phi dp - 6p^{2} d\phi - 4z dz$ $\int_{L}^{sm} d\bar{x} = \int_{p=0}^{sm} 5p sih \phi dp - 6p^{2} d\phi - 4z dz$

+ 5 TSpsingdp-6/2dp-42/dt 6=0.51 50 -32

 $= 5(f_{z}^{2})|_{\rho=0}^{3} - 6(9) \beta|_{0.5\pi}^{\pi} = \frac{5}{2}(9-0) - \frac{54(\pi-0.5\pi)}{100}$ $\int_{0.5\pi}^{M\cdot d\bar{l}} = \frac{-67.323}{100} \left(\frac{Meer}{Lats}\right)$