

Homework 14 (Extra Credit)
EE 381 Electric & Magnetic Fields (Fall 2025)
Monday, December 8, 2025

- 1) 8.42 **Round to nearest integer.**
- 2) 8.45
- 3) A long straight wire, located along the z -axis, carries a current of 24 A in the z -direction. Adjacent to this wire, there is a rectangular loop described by $0.1 \leq \rho \leq 0.2$ m, $-0.1 \leq z \leq 0.1$ m, & $\phi = \pi/2$. Find the magnetic flux ψ_{loop} through the rectangular loop due to the long straight wire. Then, find the mutual inductance M_{loop} between the loop and the long wire. If the single rectangular loop is instead a 16-turn tightly wound coil, find the flux linkage λ_{coil} and new mutual inductance M_{coil} .
- 4) 8.51 Also, calculate the magnetic field intensity vector \bar{H} and magnetic energy density w_m .

Due Thursday, December 11, 2025 by 4 pm my office or EECS mail box.

- This is an **optional extra credit** assignment. If you choose to do it, I will replace your lowest counted HW or quiz score (whichever helps the most).
- There will be **at least** one question dealing with this material on the final.
- Every problem should include a sketch of the problem geometry (if applicable).
- If not otherwise specified, assume units of meters for all positions and distances.