Homework 3

EE 381 Electric & Magnetic Fields (Fall 2025) Wednesday, September 17, 2025

- 1) A radio engineer needs a capacitive reactance of $-j45 \Omega$ at a frequency of 980 MHz for a matching network. The engineer is required to use stubs made from 50Ω coaxial transmission line with a phase velocity of $u = 2.3 \times 10^8$ m/s. Find the length of the shortest realizable stubs with (a) open-circuit and (b) short-circuit terminations and sketch equivalent circuits for the resulting stubs.
- 2) 11.41 Use Smith chart. Also, find Z_{\min} .
- 3) 11.44 Use Smith chart. Also, find Γ_L , y_{in} , and SWR.
- 4) 11.50 Use Smith chart.
- 5) 11.52 Use Smith chart. Also, find the load reflection coefficient, SWR, and shortest distance from the load to where the voltage has the largest magnitude. Distances are in terms of λ .

Due Monday, September 22, 2025.

Notes:

- Express all phasor quantities, i.e., currents & voltages, and reflection coefficients in polar/phasor format with angles in degrees (e.g., $10 \angle 30^{\circ} \text{V}$, $12 \angle 140^{\circ} \text{mA}$). Express admittances, impedances & propagation constants in rectangular format (e.g., $Z_L = 10 + j30\Omega$).
- Where relevant, use <u>one</u> Smith chart per problem inserted immediately after the corresponding problem. Clearly label all work and relevant quantities on each Smith chart (e.g., Z_0 , u & f or λ , all points, arcs, distances, ...).