Homework 2 EE 381 Electric & Magnetic Fields (Fall 2024) Thursday, September 12, 2024

- 1) 11.30 Also, calculate the load Γ_L & input Γ_{in} reflection coefficients.
- 2) 11.33 Note that generator voltage is in RMS. Before parts b) d), find V_0^+ , V_0^- , & Vs(z) in RMS. Hint: What the text calls V is Vs(z).
- 3) 11.37 Solve analytically. Also, find the load reflection coefficient Γ_L , reflection coefficient $\Gamma_{\lambda/4}$ a $\lambda/4$ from load, and standing wave ratio.
- 4) A lossless transmission line ($Z_0 = 50 \ \Omega$, $u = 2.3 \times 10^8 \text{ m/s}$) of some length *l* is terminated with an unknown load Z_L . Using a vector network analyzer (VNA), an input impedance $Z_{in} = 75 - j30 \ \Omega$ is measured. The transmission line is connected to a generator operating at 980 MHz with a voltage $v_g(t) = 25 \cos(\omega t)$ V and impedance $Z_g = 60 \ \Omega$. Draw the transmission line circuit. Then, determine (a) the phase constant β & wavelength λ for the transmission line, (b) the phasor current I_0 & voltage V_0 at the input, (c) the input reflection coefficient Γ_{in} , (d) the phasor forward V_0^+ & backward V_0^- voltages, (e) the equations for the phasor current $I_s(z)$ & voltage $V_s(z)$ along the transmission line, and (f) the time-domain equations for the current I(z,t) & voltage V(z,t) along the transmission line.
- 5) For the previous problem, if *l* = 40 cm, determine: (a) the electrical length of the transmission line β*l* (degrees & radians) as well as its length in terms of wavelengths, (b) the load reflection coefficient Γ_L, (c) the load impedance Z_L, (d) SWR, and (e) the phasor load voltage V_L & current I_L.
- 6) An RG-6 coaxial transmission line $(Z_0 = 75 \Omega, u = 2 \times 10^8 \text{ m/s}, \alpha = 9.51 \text{ dB}/100 \text{ m})$ of length 570 cm is terminated with a load. Using a vector network analyzer (VNA), a load reflection coefficient of $\Gamma_L = 0.5 \angle -44^\circ$ is measured. The transmission line is connected to a generator with $V_g = 36 \angle 0^\circ$ V and $Z_g = 68 \Omega$ operating at 100 MHz. Draw the TL circuit. Then, determine (a) the attenuation (Np/m), phase (rad/m), & propagation constants, (b) SWR & load impedance, (c) input reflection coefficient & impedance, (d) phasor input current & voltage, (e) phasor forward voltage wave amplitude, and (f) phasor load current & voltage.

Due Wednesday, September 18, 2024.

Note: Express currents, voltages, and reflection coefficients in polar/phasor format with angles in degrees (e.g., $0.4\angle 66^{\circ}$). Express impedances in rectangular format (e.g., $22-j44 \Omega$).