Parameters			
	Coaxial Line	Two-Wire Line	Planar Line
R (Ω/m)	$\frac{1}{2\pi\delta\sigma_c}\left[\frac{1}{a} + \frac{1}{b}\right]$ $(\delta \ll a, c - b)$	$\frac{1}{\pi a \delta \sigma_c}$ $(\delta \ll a)$	$\frac{2}{w\delta\sigma_c}$ $(\delta \ll t)$
<i>L</i> (H/m)	$\frac{\mu}{2\pi} \ln \frac{b}{a}$	$\frac{\mu}{\pi} \cosh^{-1} \frac{d}{2a}$	$\frac{\mu d}{w}$
G (S/m)	$\frac{2\pi\sigma}{\ln\frac{b}{a}}$	$\frac{\pi\sigma}{\cosh^{-1}\frac{d}{2a}}$	$\frac{\sigma w}{d}$
C (F/m)	$\frac{2\pi\varepsilon}{\ln\frac{b}{a}}$	$\frac{\pi\varepsilon}{\cosh^{-1}\frac{d}{2a}}$	$\frac{\varepsilon w}{d}$ $(w \gg d)$

TABLE 11.1 Distributed Line Parameters at High Frequencies*

*
$$\delta = \frac{1}{\sqrt{\pi f \mu_c \sigma_c}} = \text{skin depth of the conductor; } \cosh^{-1} \frac{d}{2a} \simeq \ln \frac{d}{a} \text{ if } \left[\frac{d}{2a}\right]^2 \gg 1.$$

Notes:

- 1) The material parameters μ , ε , and σ are for the transmission line (TL) **insulation**.
- 2) The material parameters μ_c , ε_c , and σ_c are for the TL **conductors**.
- 3) $L \approx L_{\text{ext}}$. At high frequencies, the current is essentially on the surface of the TL conductors due to the skin depth effect (see Chapter 10). Therefore, $L_{\text{int}} \approx 0$.
- 4) The electric permittivity ε is typically expressed in terms of the relative permittivity ε_r (see Appendix B), i.e., $\varepsilon = \varepsilon_r \varepsilon_0$ where $\varepsilon_0 = 8.8541878 \times 10^{-12}$ F/m is the permittivity of free space.
- 5) The magnetic permeability μ is typically expressed in terms of the relative permeability μ_r (see Appendix B), i.e., $\mu = \mu_r \mu_0$ where $\mu_0 = 4\pi \times 10^{-7}$ H/m is the permeability of free space.

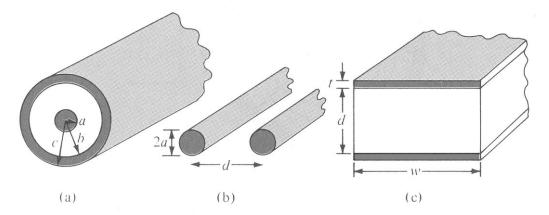


Figure 11.2 Common transmission lines: (a) coaxial line, (b) two-wire line, (c) planar line.