

For the lossless transmission line circuit shown, f = 100 MHz,  $u = 3 \times 10^8$  m/s,  $\ell = 3.3$  m,  $Z_0 = 50 \Omega$ , and  $Z_L = 75 + j 50 \Omega$ .

## 1) Normalize and plot load impedance

- ► Normalize load impedance  $z_L = Z_L / Z_0 = (75 + j50) / 50 \Rightarrow \underline{z_L} = 1.5 + j1 \Omega / \Omega$ .
- > Plot  $z_L$  on Smith chart by finding intersection of r = 1.5 circle with x = 1 arc.

## 2) Find load reflection coefficient and SWR

- Set compass to distance between center of Smith chart and  $z_L$ . Use compass to mark the "REFL. COEFF. V or I" scale below Smith chart on right side to determine  $|\Gamma_L| = 0.42$ .
- → Use compass to draw  $|\Gamma| = 0.42$  arc, centered on Smith chart scales, through SWR (VSWR) scale below Smith chart on left side. Read <u>SWR = 2.4</u>.
- → Use a straight edge to draw radial line from center of Smith chart through  $z_L$  and outer rings of Smith chart. Use the "ANGLE OF REFLECTION COEFFICIENT IN DEGREES" scale to read  $\angle \Gamma_L = 41.8^\circ$ .
- > Put magnitude and angle together to get  $\underline{\Gamma_L} = 0.42 \angle 41.8^\circ$ . For comparison, the analytic result is  $\Gamma_L = 0.4152 \angle 41.63^\circ$ .

## 3) Find input reflection coefficient

≻ Calculate  $\ell/\lambda = \ell f/u = 3.3 (100 \times 10^6)/3 \times 10^8 = 1.1$ . Subtract 2(0.5) = 1 (i.e.,

remove integer multiples of  $n\lambda/2$ ) to get  $\Rightarrow \ell/\lambda = 0.1$ .

- > On the Smith chart, the radial line through  $z_L$  reads 0.192 on the "WAVELENGTHS TOWARD GENERATOR" scale. Add  $0.192 + \ell/\lambda = 0.192 + 0.1$  to get 0.292 and draw a radial line from the center of the Smith chart through this point on the "WAVELENGTHS TOWARD GENERATOR" scale.
- ➤ Draw an arc, centered on Smith chart, from the  $z_L$  point through the radial line at 0.292. The intersection of the arc and radial line is the  $\Gamma_{in}$  and  $z_{in}$  point. Use the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read  $\angle \Gamma_{in} = -30.2^{\circ}$  and note  $|\Gamma_{in}| = |\Gamma_L| = 0.42$ .
- > Put magnitude and angle together to get  $\underline{\Gamma_{in}} = 0.42 \angle -30.2^{\circ}$ .

## 4) Find normalized input impedance and input impedance

- → At the  $\Gamma_{in} = 0.42 \angle -30.2^{\circ}$  point, locate and read/interpolate value of appropriate "*r*" circle as <u>*r*<sub>in</sub> = 1.8</u>.
- → At the  $\Gamma_{in} = 0.42 \angle -30.2^{\circ}$  point, locate and read/interpolate value of appropriate "x" arc as <u>x<sub>in</sub> = -0.92</u>.
- > Put together to get <u>normalized</u> input impedance  $\underline{z_{in}} = 1.8 j0.92 \Omega/\Omega$ .
- ➢ Find input impedance by multiplying z<sub>in</sub> with the characteristic impedance to get Z<sub>in</sub> = Z<sub>0</sub> z<sub>in</sub> = 50(1.8−j 0.92) ⇒ Z<sub>in</sub> = 90 − j46 Ω.

