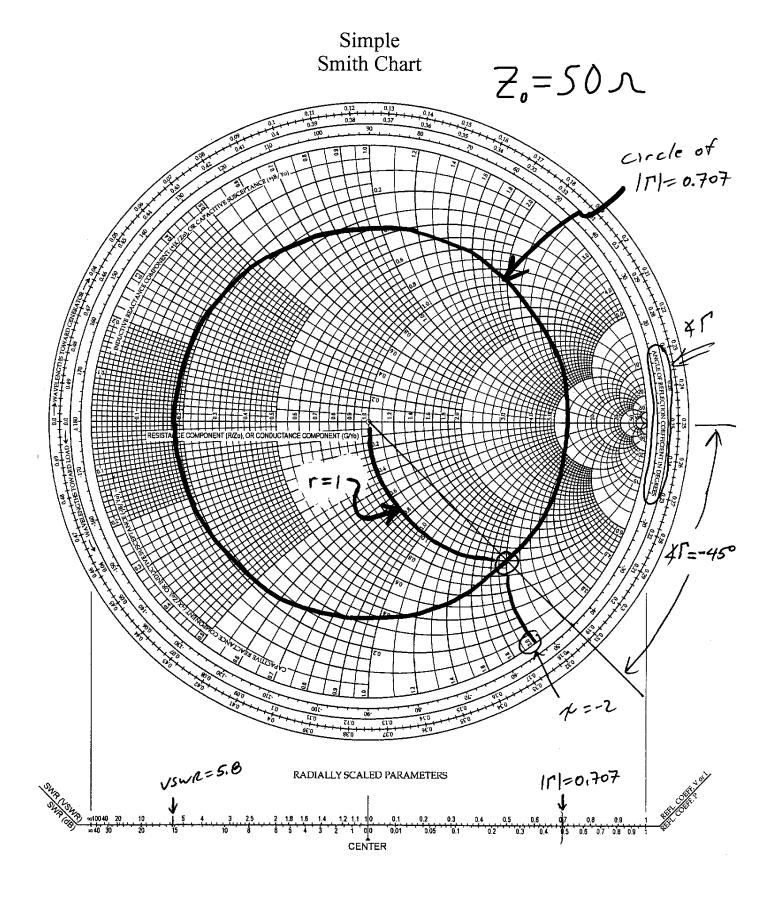
1) Plot reflection coefficient $\Gamma = 0.707 \angle -45^{\circ}$ for a 50 Ω transmission line


- ➤ Use straight edge to draw radial line from center of Smith chart through the -45° mark on "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale (inner ring surrounding Smith chart).
- ▶ Use "REFL. COEFF. V or I" scale at bottom right of chart to set compass to $|\Gamma| = 0.707$, and draw arc, centered on Smith chart, through -45° radial line.
- \triangleright The intersection of radial line & arc marks $\Gamma = 0.707 \angle -45^{\circ}$ on Smith chart.

2) Read normalized impedance z corresponding to this Γ . Also, find the impedance Z.

- ➤ On Smith chart, at $\Gamma = 0.707 \angle -45^{\circ}$ point, locate and read/interpolate value of appropriate "r" circle as $\underline{r=1}$. The normalized resistance family of circles are centered on horizontal axis and with values shown on horizontal axis.
- ➤ On Smith chart, at $\Gamma = 0.707 \angle -45^\circ$ point, locate and read/interpolate value of appropriate "x" arc as $\underline{x = -2}$. Normalized reactance arcs originate horizontal axis on LH side of Smith chart. Values are shown just inside the outer ring of the Smith chart; values above horizontal axis are positive/inductive while those below are negative/capacitive.
- \triangleright Put r and x together to get the normalized impedance $z = 1 j2 \Omega/\Omega$.
- Find impedance corresponding to $\Gamma = 0.707 \angle -45^{\circ}$ by multiplying z w/characteristic impedance Z_0 to get $Z = Z_0 z = 50 (1 j2)$ $\Rightarrow Z = 50 j100 \Omega$.

3) Read standing wave ratio SWR (VSWR) corresponding to $\Gamma = 0.707 \angle -45^{\circ}$

- ➤ Use "REFL. COEFF. V or I" scale below Smith chart on right side to set your compass to $|\Gamma| = 0.707$.
- ➤ Draw 0.707 arc, centered on Smith chart scales, through SWR (VSWR) scale below Smith chart on left side.
- \triangleright Read standing wave ratio to be **SWR** = **5.8**.

