EE 362 Electronic, Magnetic, & Optical Properties of Materials Quiz 5 (Spring 2024)

Name KEY A

Instructions: Open book & notes. Place answers in indicated spaces. Show all work. Use 4-5 significant figures.

At 300 K, a section of germanium is being used as resistive trace. It has been doped only with acceptor atoms to a concentration of 6×10^{16} #/cm³. Determine the intrinsic carrier concentration (#/cm³), majority carrier type, majority carrier concentration (#/cm³), majority carrier mobility (cm²/V-s), conductivity (S/cm), and resistivity (Ω -cm) of the doped germanium. Find the required width (μ m) of the resistive trace to implement a resistance of 160 Ω if the trace is 50 μ m long and the doping penetrates to a depth of 8 μ m.

MathCad

Given
$$e := 1.602176634 \cdot 10^{-19}$$
 C Nd := 0
Na := $6 \cdot 10^{16}$ cm⁻³ L := $50 \cdot 10^{-6}$ m d := $8 \cdot 10^{-6}$ m R := 160Ω

From Table B.4, the intrinsic carrier concentration-

 $ni := 2.4 \cdot 10^{13}$ cm⁻³

μp := 1000

 $\rho = 0.10403$

 $W = 4.063482 \times 10^{-5}$

cm²/V-s

Ω-cm

m

(4.62), $p \sim N_a >> n_i$ implies the majority charges are <u>holes</u>.

p :=	$\frac{\mathrm{Na}-\mathrm{Nd}}{2}+\sqrt{2}$	$\left(\frac{Na - Nd}{2}\right)$	$\Big)^2 + ni^2$	$p = 6.000001 \times 10^{16}$	cm-3
------	--	----------------------------------	------------------	-------------------------------	------

From Fig. 5.3 (Ge), the hole mobility is

(5.23) $\sigma_\text{Scm} := e \cdot \mu p \cdot p$ $\sigma_\text{Scm} = 9.61306$ S/cm

$$\sigma \coloneqq \sigma_{\rm Scm} \cdot 100 \qquad \qquad \sigma = 961.306134 \qquad \text{S/m}$$

 $(5.20) \qquad \qquad \rho := \frac{1}{\sigma \text{ Scm}}$

intrinsic carrier conc. = $\underline{2.4 \times 10^{13} \text{ #/cm}^3}$ majority carrier type: holes or electrons (circle) majority carrier conc. = $\underline{6 \times 10^{16} \text{ #/cm}^3}$ majority carrier mobility = $\mu_p = \underline{1000 \text{ cm}^2/\text{V-s}}$ conductivity = $\underline{9.6131 \text{ S/cm}}$ resistivity = $\underline{0.10403 \Omega\text{-cm}}$ width = $\underline{40.635 \mu\text{m}}$

EE 362 Electronic, Magnetic, & Optical Properties of Materials Quiz 5 (Spring 2024)

Name **KEY C**

Instructions: Open book & notes. Place answers in indicated spaces. Show all work. Use 4-5 significant figures.

At 300 K, a section of germanium is being used as resistive trace. It has been doped only with acceptor atoms to a concentration of $9 \times 10^{16} \, \text{#/cm}^3$. Determine the intrinsic carrier concentration (#/cm³), majority carrier type, majority carrier concentration (#/cm³), majority carrier mobility (cm²/V-s), conductivity (S/cm), and resistivity (Ω -cm) of the doped germanium. Find the required width (μ m) of the resistive trace to implement a resistance of 120 Ω if the trace is 40 μ m long and the doping penetrates to a depth of 9 μ m.

MathCad

Given
$$e_{m} := 1.602176634 \cdot 10^{-19}$$
 C Nd := 0
Na := $9 \cdot 10^{16}$ cm⁻³ L := $40 \cdot 10^{-6}$ m d := $9 \cdot 10^{-6}$ m R := 120Ω

From Table B.4, the intrinsic carrier concentration-

 $m := 2.4 \cdot 10^{-5}$ cm⁻⁵

cm²/V-s

Ω-cm

m

(4.62), $p \sim N_a >> n_i$ implies the majority charges are <u>holes</u>.

$$p := \frac{Na - Nd}{2} + \sqrt{\left(\frac{Na - Nd}{2}\right)^2 + ni^2}$$
 $p = 9.000001 \times 10^{16}$ cm⁻³

From Fig. 5.3 (Ge), the hole mobility is

 σ Scm = 12.97763 S/cm (5.23) σ Scm := e·µp·p

$$\sigma \coloneqq \sigma_{\rm Scm} \cdot 100 \qquad \qquad \sigma \equiv 1297.763 \qquad \text{S/m}$$

μp := 900

 $\rho = 0.077056$

 $W = 2.853913 \times 10^{-5}$

$$(5.20) \qquad \qquad \rho := \frac{1}{\sigma_{\rm Scm}}$$

(5.22b)
$$W := \frac{L}{\sigma \cdot d \cdot R}$$

intrinsic carrier conc. = 2.4×10^{13} #/cm³ majority carrier type: **holes** or electrons (circle) majority carrier conc. = $\underline{9 \times 10^{16} \text{ #/cm}^3}$ majority carrier mobility = $\mu_p = 900 \text{ cm}^2/\text{V-s}$ resistivity = 0.077056Ω -cm conductivity = **12.9776 S/cm** width = $28.539 \,\mu m$

