At 300 K, a silicon npn bipolar j	unction transistor	(BJT), with	each region	uniformly	doped,
has the following parameters:					

$N_E = 1.6 \times 10^{18} \text{ cm}^{-3}$	$N_B = 3 \times 10^{16} \text{ cm}^{-3}$	$N_C = 2 \times 10^{15} \text{ cm}^{-3}$
$D_E = 7.5 \text{ cm}^2/\text{sec}$	$D_B = 14 \text{ cm}^2/\text{sec}$	$D_C = 11 \text{ cm}^2/\text{sec}$
$\tau_{E0} = 10 \text{ ns}$	$\tau_{B0} = 44 \text{ ns}$	$\tau_{C0} = 90 \text{ ns}$
$x_E = 0.9 \ \mu m$	$x_B = 0.7 \ \mu m$	$x_C = $ large

Also, $A_{BE} = 3 \times 10^{-3} \text{ cm}^2$, $x_{BE} = 7.6 \text{ nm}$, $V_{BE} = 0.62 \text{ V}$ and $V_{CE} = 4.8 \text{ V}$. Then:

- a) Determine the thermal equilibrium minority carrier concentrations p_{E0} , n_{B0} , and p_{C0} .
- b) Find the current densities J_{nE} and J_{pE} as well as the emitter current I_E . What fraction of I_E is due to electrons?
- c) Find the current density constants J_{s0} and J_{r0} .
- d) Find the approximate base transport factor α_T and emitter injection efficiency γ as well as the recombination factor δ .
- e) Find the approximate common-base α and common-emitter β current gains.
- f) Find the collector I_C and base I_B currents.

a) Per Table B.4,
$$N_{i} = 1.5 \times 10^{10} \text{ cm}^{-3}$$
 @ 300K for S:
Per (4.43), $N_0 P_0 = N_i^{-2}$
Emitter $N_0 = N_E$, $P_{E0} = \frac{(1.5 \times 10^{10})^2}{1.6 \times 10^{16}} \Rightarrow \frac{P_{E0} = 140,625 \text{ cm}^{-2}}{1.6 \times 10^{16}}$
Base $P_0 = N_B$, $N_{B0} = \frac{(1.5 \times 10^{10})}{3 \times 10^{16}} \Rightarrow \frac{N_{B0} = 7500 \text{ cm}^{-3}}{1.25 \times 10^5 \text{ cm}^{-3}}$
Collector $N_0 = N_C$, $P_{C0} = \frac{(1.5 \times 10^{10})^2}{2 \times 10^{15}} \Rightarrow \frac{P_{C0} = 1.125 \times 10^5 \text{ cm}^{-3}}{1.25 \times 10^5 \text{ cm}^{-3}}$
b) Per (12.346), $T_{NE} = \frac{e N_B N_{B0}}{L_B} \left\{ \frac{1}{5inh(X_B/L_B)} + \frac{e^{\frac{V_BE}{L_B}}}{1 + nh(X_B/L_B)} \right\}$

b) cont. Puge S04 of text,
$$L_{B} = \sqrt{lBT_{B0}}$$

 $L_{B} = \sqrt{14 \times 10^{-4} m_{S}^{2}} \frac{44 \times 10^{-7} s^{2}}{2} = 7.84857 \times 10^{-6} m$
Per (7.10), $V_{E} = \frac{l_{B}T}{e} = \frac{0.617333 \times 10^{-5} e^{4/k} (300k)}{e} = 0.025852 V$
 $J_{nE} = \frac{1.6022 \times 10^{-19} (14 \times 10^{-4}) \frac{7.5 \times 10^{9}}{1.5 \times 10^{-6}} \left(\frac{1}{5 \ln h (0.7/7.649)} + \frac{e^{0.623852} - 1}{1 + n h (0.7/7.849)} \right)$
 $J_{nE} = 6.27325 \times 10^{-4} M_{m}^{2} = 6.27325 \frac{M_{cm}^{2}}{L_{E}}$
 $Per (12.34a)$, $J_{gE} = \frac{e}{LE} \frac{PE}{E0} \left(e^{-V_{B}E/E} - 1 \right) \frac{1}{1 + n h (NE/LE)}$
 $Per (12.18), L_{E} = \sqrt{0.67E_{E0}} = \sqrt{7.5 \times 10^{-4} (10 \times 10^{-7})} = 2.73866 \times 10^{-6} m$
 $J_{RE} = \frac{1.6022 \times 10^{-19} (7.5 \times 10^{-1}) \frac{1.40625 \times 10^{8}}{2.730613 \times 10^{-6}} \left(e^{0.633852} - 1 \right) \frac{1}{1 + n h (0.9/2.3366)}$
 $J_{PE} = 506.2738 \frac{M_{m}^{2}}{2.730613 \times 10^{-6}} = 6.323877 (3 \times 10^{-3})$
 $I_{E} = 0.0189716 A = 18.9716 m A$
 $F_{rac} = \frac{J_{nE}}{3pE + J_{nE}} = \frac{62.732.5}{62.732.5 + 506.2738} = 0.9919794 = 99.2720$

C) From (12.41)
$$J_{A} = \frac{e \times_{6E} h_{i}}{2T_{0}} e^{\frac{1}{2}VE} = J_{ro} e^{\frac{1}{2}VE} 24E}$$

 $for (8.39), T_{0} = \frac{7_{0}0 + T_{n0}}{2} = \frac{7_{0}0 + 7_{E0}}{2} = \frac{10 + 44}{2} = 27 \text{ ms}$
 $J_{ro} = \frac{1.6022 \times 10^{-19} (7.6 \times 10^{-9})(1.5 \times 10^{-6})}{2(27 \times 10^{-9})}$
 $J_{ro} = 3.38237 \times 10^{-4} A_{m}^{2} = 3.38237 \times 10^{-8} A_{m}^{2}$
 $h_{er} (12.43), J_{so} = \frac{e \sqrt{B} 180}{L_{8} \tanh(xe/L_{8})}$
 $J_{so} = \frac{1.6022 \times 10^{-19} (14 \times 10^{-4})(7.5 \times 10^{-9})}{7.84857 \times 10^{-6} 4_{m} \times 10^{-7} (14 \times 10^{-7})(7.5 \times 10^{-10} A_{m}^{2})}$

$$\alpha_T \simeq \frac{1}{1 + \frac{1}{2} (\frac{x_{B_{L_B}}}{x_{B_B}})^2} = \frac{1}{1 + \frac{1}{2} (\frac{0.7}{7.84857})^2}$$

$$\begin{aligned} & \mathcal{T} = 0.99604 \\ \hline \\ & \mathcal{T} = \frac{1}{1 + \frac{NB}{NE} \frac{DE}{0B} \frac{XB}{XE}} = \frac{1}{1 + \frac{3 \times 10^{16}}{1.6 \times 10^{18} \frac{7.5}{14} \frac{0.7}{0.9}} } \\ & \mathcal{T} = 0.992248 \end{aligned}$$

d) cont.
$$\int = \frac{1}{1 + \frac{3.36}{350} e^{-165E/2V_E}}$$

$$\int = \frac{1}{1 + \frac{3.36237 \times 10^4}{2.409034K_{10}^{-6}} e^{-\frac{0.62}{2(00258652)}} \Rightarrow \int \frac{5 = 0.999131}{2.409034K_{10}^{-6}} e^{-\frac{0.62}{2(00258652)}}$$
e) Per Tuble 12.3

$$\propto = V \propto_T \delta = 0.992248 (0.99604) 0.999131$$

$$\frac{\propto}{2} \approx 0.98746}$$

$$\beta = \frac{\alpha}{1 - \alpha} = \frac{0.98746}{1 - 0.98746} \Rightarrow \frac{\beta = 78.7334}{\beta}$$
f)
$$\alpha = I_{efg} (12.5) + \beta = I_{efg} (12.6)$$

$$I_c = \alpha I_E = 0.98746 (18.9716 \text{ mA})$$

$$\frac{I_c = 18.7337 \text{ mA}}{78.7334}$$

$$I_B = \frac{I_{efg} (18.7337 \text{ mA}}{78.7334}$$