For a uniformly doped ($N_a = 6 \times 10^{15}$ cm⁻³ on the p-side and $N_d = 4 \times 10^{16}$ cm⁻³ on the n-side) silicon pn junction at 300 K with cross-sectional area 30×10^{-9} m², calculate $x_n, x_p, W, |E_{\text{max}}|, C$, and C when: a) $V_R = 0$ and b) $V_R = 1.8$ V.

Table B.4,
$$E_{i} = 11.7 + 1 = 1.5 \times 10^{10} \frac{1}{6m^{3}} = 1.5 \times 10^{16} \frac{1}{m^{-3}}$$

@ 300 K

(7.10) $V_{b:i} = \frac{K_{a}T}{e} / n \left(\frac{N_{a}N_{b}}{n_{i}^{2}} \right) = V_{t} / n \left(\frac{N_{a}N_{b}}{n_{i}^{2}} \right)$
 $V_{t} = \frac{8.617383 \times 10^{5} \text{ eV/k} (300\text{k})}{e} = 0.025852 \text{ V}$
 $V_{b:i} = 0.025852 / n \left(\frac{6 \times 10^{15} (4 \times 10^{16})}{(1.5 \times 10^{10})^{2}} \right) = 0.71599 \text{ V}$

a) $V_{A} = 0$

(7.28) $X_{n} = \left(\frac{2E_{5}V_{b:i}}{e} \left(\frac{N_{b}}{N_{b}} \right) \frac{1}{N_{a} + N_{b}} \right)^{1/2}$

$$= \left(\frac{2(11.7)8.8542 \times 10^{-12} (0.716)}{1.6021766 \times 10^{-19}} \left(\frac{6}{90} \right) \frac{1}{6 \times 10^{21} + 4 \times 10^{22}} \right)^{1/2}$$
 $X_{n} = 5.49472 \times 10^{8} \text{ m} = 54.947 \text{ nm}$

(7.29) $X_{p} = \left(\frac{2E_{5}V_{b:i}}{e} \left(\frac{N_{b}}{N_{a}} \right) \frac{1}{N_{a} + N_{b}} \right)^{1/2}$

$$= \left(\frac{2(11.7)8.8542 \times 10^{-7} (0.716)}{1.6021766 \times 10^{-79}} \left(\frac{490}{6} \right) \frac{1}{6 \times 10^{21} + 4 \times 10^{22}} \right)^{1/2}$$
 $X_{p} = 3.66315 \times 10^{-7} \text{ m} = 366.315 \text{ nm}$

(7.30) $W = X_{n} + X_{p} = 5.4947 \times 10^{-8} + 3.66315 \times 10^{-7}$
 $W = 421.262 \text{ nm}$

a) cont.

$$(7.37) \quad E_{max} = \frac{-2(V_{6}; + V_{A})}{W} = \frac{-2(0.71599)}{4.21262 \times 10^{-7}}$$

$$|E_{max}| = 3.39924 \times 10^{-6} V_{m} = 3.399 \frac{mV}{m}$$

$$(7.43) \quad C' = \frac{6}{5}W = \frac{11.7(8.8542 \times 10^{-12})}{4.21262 \times 10^{-7}} = 2.45913 \times 10^{-7} V_{m}^{-2}$$

$$C = C'A = 2.459 \times 10^{-4} (30 \times 10^{-9}) = 7.3774 \text{ pF}$$
b) $V_{R} = 1.8V \Rightarrow \text{Neplace } V_{6}; \text{ w/ } V_{60+} = 0.71599 + 1.8 = 2.51599V$

$$\text{In } \text{ prior eg'ns } \text{ to scale answers}$$

$$X_{n} = 5.49472 \times 10^{-8} \left\{ \frac{2.516}{9.716} \right\}^{1/2}$$

$$X_{n} = 1.03003 \times 10^{-7} \text{ m} = 103.003 \text{ nm}$$

$$X_{p} = 3.66315 \times 10^{-7} \left(\frac{2.516}{9.716} \right)^{1/2}$$

$$X_{p} = 6.86684 \times 10^{-7} \text{ m} = 686.684 \text{ nm}$$

$$W = 103.003 + 696.684 \Rightarrow W = 789.686 \text{ nm}$$

$$|E_{max}| = \frac{2(2.516)}{789.686 \times 10^{-9}} \Rightarrow |E_{max}| = 6.372 \frac{mV_{m}}{m^{2}}$$

$$C' = \frac{6}{W} = \frac{11.7(8.8542 \times 10^{-12})}{789.686 \times 10^{-9}} \Rightarrow C' = 1.3118 \times 10^{-9} V_{m}^{-2}$$

$$C = C'A = 1.3118 \times 10^{-9} (30 \times 10^{-9}) \Rightarrow C = 3.9355 \text{ pF}$$