5.25 Assume that the mobility of electrons in silicon at T = 300 K is $\mu_n = 1300 \text{ cm}^2/\text{V-s}$. Also assume that the mobility is limited by lattice scattering and varies as $T^{-3/2}$. Determine the electron mobility at (a) T = 200 K and (b) T = 400 K.

We are given that $\mu \propto T^{-3/2}$. This implies $\mu_{n,300} = 1300 = C(300)^{-3/2}$ where C is the proportionality constant.

Solving for C yields \Rightarrow C = 1300 (300)^{3/2} = 6754998.15.

a) At 200 K,
$$\mu_{n,200} = 6754998.15(200)^{-3/2}$$
 $\Rightarrow \mu_{n,200} = 2388.25 \text{ cm}^2/\text{V} \cdot \text{s}$

b) At 400 K,
$$\mu_{n,400} = 6754998.15(400)^{-3/2}$$
 $\Rightarrow \mu_{n,400} = 844.37 \text{ cm}^2/\text{V} \cdot \text{s}$