2.19 The solution to Schrodinger's wave equation for a particular situation is given by $\psi(x)=\sqrt{2 / a_{0}} \cdot e^{-x / a_{0}}$. Determine the probability of finding the particle between the following limits: (a) $0 \leq x \leq a_{0} / 4$, (b) $a_{0} / 4 \leq x \leq a_{0} / 2$, and (c) $0 \leq x \leq a_{0}$.
$>$ First, find the probability of finding the particle between $0<x<\infty$.
$\operatorname{Per}(2.17),|\psi(x, t)|^{2}=\psi(x) \psi^{*}(x)=\sqrt{\frac{2}{a_{0}}} e^{-x / a_{0}} \sqrt{2 / a_{0}} e^{-x / a_{0}}$

$$
=\frac{2}{a_{0}} e^{-2 x a_{0}}
$$

$$
\begin{aligned}
\operatorname{Prob}(0<x<\infty) & =\int_{x=0}^{\infty}|\psi(x, t)|^{2} d x=\frac{2}{a_{0}} \int_{x=0}^{\infty} e^{-\frac{2 x}{a_{0}}} d x \\
& =\left.\frac{2}{a_{0}} \frac{e^{-2 x a_{0}}}{-2 / a_{0}}\right|_{x=0} ^{\infty}=-1\left(0-e^{0}\right)
\end{aligned}
$$

$\operatorname{Prob}(0<x<\infty)=1$ or 100%
a)

$$
\begin{aligned}
\operatorname{Prob}\left(0 \leq x \leq a_{0} / 4\right) & =\frac{2}{a_{0}} \int_{x=0}^{a_{0} / 4} e^{-2 x / a_{0}} d x \\
& =\left.(-1) e^{-2 x a_{0}}\right|_{x=0} ^{a_{0} / 4}=-1\left[e^{-1 / 2}-1\right] \\
\operatorname{Prob}\left(0 \leq x \leq \frac{a_{0}}{4}\right) & =0.39347 \text { or } 39,347 \%
\end{aligned}
$$

b)

$$
\begin{aligned}
& \operatorname{Prob}\left(\frac{a_{0}}{4} \leq x \frac{a_{0}}{2}\right)=\left.(-1) e^{-\frac{2 x}{a_{0}}}\right|_{x=a_{0} / 4} ^{a_{0} / 2}=-1\left(e^{-1}-e^{-1 / 2}\right) \\
& \operatorname{Prob}\left(\frac{a_{0}}{4} \leq x \leq \frac{a_{0}}{2}\right)=0.23865 \text { or } 23.865 \%
\end{aligned}
$$

c) $\operatorname{Prob}\left(0 \leq x \leq a_{0}\right)=\left.(-1) e^{-2 x a_{0}}\right|_{x=0} ^{a_{0}}=-1\left[e^{-2}-1\right]$

$$
\operatorname{Prob}\left(0 \leq x \leq a_{0}\right)=0.86466 \text { or } 86.466 \%
$$

