For the four orthorhombic Bravais lattices: a) simple, b) body-centered, c) face-centered, and d) side-/endcentered, compute how many atoms are contained within each of the unit cells and the volume density when $\mathrm{a}=4.6 \AA, \mathrm{~b}=5.6 \AA$, and $\mathrm{c}=6.8 \AA$. Treat each atom as a sphere and count only that portion of the sphere that actually resides within the cube.

a) \mathbf{P}

b) I

c) F

d) \mathbf{C}
a) Simple orthorhombic
\#atoms/unit cell $=8$ corners $\left(\frac{1 / 8 \text { atom }}{\text { corner }}\right)=1$ atom atomic vol. density $=\frac{1 \text { atom }}{a b c}=\frac{1}{\left(4.6 \times 10^{-10}\right)\left(5.6 \times 10^{-19}\right)\left(6.8 \times 10^{-19}\right)}$

$$
N_{\rho}=5.7088 \times 10^{27} \frac{\mathrm{atams}}{\mathrm{~m}^{3}}=5.7088 \times 10^{21} \frac{\mathrm{atoms}}{\mathrm{~cm}^{3}}
$$

b) Body-centered or thorhombic
\# atoms/un.t cell $=8$ corners $\left(\frac{\text { Vautom }}{\text { corner }}\right)+1$ atom inside

$$
\text { atomic vol. density }=\frac{2 \text { atom } 5}{a b c}=2\left(5.7088 \times 10^{27}\right)
$$

C) Face-centered or thorhomble

$$
\begin{aligned}
\text { \#atoms/unit cell } & =8 \text { corners }\left(\frac{1 / 8 \text { atom }}{\text { corner }}\right)+6 \text { faces }\left(\frac{1 / 2 \text { atom }}{\text { face }}\right) \\
& =4 \text { atom } 5
\end{aligned}
$$

$$
\begin{aligned}
\text { atomic vol. density } & =\frac{\text { atoms }}{a b c}=4\left(5.7088 \times 10^{27}\right) \\
N_{F} & =2.2835 \times 10^{28} \frac{\text { atoms }}{\mathrm{m}^{3}}=2.2835 \times 10^{22} \frac{\mathrm{atoms}}{\mathrm{~cm}^{3}}
\end{aligned}
$$

d) End-centered orthorhombic

$$
\begin{aligned}
\text { \#atoms/unit cell } & =8 \text { corners }\left(\frac{1 / 8 \text { atom }}{\text { corner }}\right)+2 \text { faces }\left(\frac{1 / 2 \text { atom }}{\text { face }}\right) \\
& =2 \text { atoms }
\end{aligned}
$$

atomic vol. density $=\frac{2 a t o m s}{a b c}=N_{I}$

$$
N_{c}=N_{I}=1.1418 \times 10^{28} \frac{u t_{0} \mathrm{~ms}}{\mathrm{~m}^{3}}=1.1418 \times 10^{22} \frac{\text { atoms }}{\mathrm{cm}^{3}}
$$

