EE 362 Electronic, Magnetic, & Optical Properties of Materials 3-0 (3 credit hours)

<u>Bring-</u> pen/pencil(s), equation sheet(s)/allowed materials, calculator, and straight-edge/ruler.

<u>**Text:</u>** Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.</u>

Chapter 1 The Crystal Structure of Solids

- Space lattices/crystal structures
- Bravais lattices
- Atomic volume & surface density
- Miller indices

Chapter 2 Introduction to Quantum Mechanics

- Photoelectric effect
- K.E., photon energy, work function
- eV versus Joules
- deBroglie wavelength and photon momentum
- Uncertainty Principle
- Schrodinger's Wave Equation
- Probability density function and potential barriers &/or wells
- Transmission & reflection coefficients

Chapter 3 Introduction to the Quantum Theory of Solids

- Quantized energy levels & energy bands
- Kronig-Penney Model and k-space diagram
- Conduction and valence bands
- Drift current density
- Electron effective mass
- Holes and hole effective mass
- Density of States Function
- Fermi-Dirac probability function and Maxwell-Boltzmann approximation

Chapter 4 The Semiconductor in Equilibium

- Electron n_0 & hole p_0 concentrations in conduction & valence bands
- Intrinsic carrier concentration $n_i = p_i$
- Intrinsic Fermi energy level E_{Fi} in relation to E_c , E_v , and E_{midgap}
- Dopants & ionization energy
- Fermi energy level E_F for doped/extrinsic semiconductors versus E_{Fi}
- $n_0 p_0 = n_i^2$ product

- Ionization rate versus temperature
- Equilibrium electron and hole concentrations for doped/extrinsic semiconductors

Chapter 5 Carrier Transport Phenomena

- Drift current density
- Diffusion current density
- Carrier mobility μ and diffusion coefficient D
- Conductivity σ and resistivity ρ and resistance R
- Drift velocity *v*_d
- Einstein Relation relating mobility and diffusion coefficient
- Hall Effect

Chapter 6 Nonequilibrium Excess Carriers in Semiconductors

- Excess Carriers
- Recombination and generation
- Excess minority carrier lifetime
- Time-dependent diffusion equations
- Ambipolar Transport equations
- Ambipolar diffusion coefficient and mobility
- Diffusion length
- Quasi-Fermi energy levels

Chapter 7 The pn Junction

- Built-in potential barrier V_{bi}
- Thermal voltage V_t
- Depletion layer/space charge widths & maximum electric field at zero bias
- Depletion layer/space charge widths & maximum electric field w/ reverse bias
- Junction capacitance $C'(F/m^2)$ and C(F)
- One-sided pn junctions

Chapter 8 The pn Junction Diode

- Be able to find majority and minority carrier concentrations on each side of depletion layer
- Be able to find minority carrier concentrations in p- and n-regions using ambipolar transport eq'n
- Be able to find electron J_n , hole J_p , & total J_{tot} current densities across depletion layer
- Be able to find ideal reverse saturation current density J_s across depletion layer
- Be able to find majority carrier current densities in p- and n-regions
- Small-signal diffusion conductance g_d , resistance r_d , and capacitance C_d as well as admittance Y
- Add in junction capacitance and series resistance for p- and n-regions to get complete small-signal circuit model of pn diode.

Chapter 10 Fundamentals of the Metal-Oxide-Semiconductor Field-effect-Transistor

- MOS capacitor depletion layer thickness x_d
- Potential associated with energy differences between E_F and E_{Fi} , ϕ_{fp} and ϕ_{fn} .
- Threshold potential ϕ_s and maximum depletion layer thickness x_{dT}
- Surface charge density at threshold and beyond
- Metal-semiconductor work function ϕ_{ms} , equivalent trapped charge surface density Q_{ss} ', oxide capacitance C_{ox} , and flat band voltage V_{FB}
- Charge density in depletion layer at threshold $|Q_{SD}'(\max)|$ and threshold (gate) voltage V_T
- C-V characteristics (e.g., C'(acc), C'(depl), C'_{FB}, C'_{min}, & C'(inv)) for MOS capacitors
- n- & p-channel MOSFET saturation voltage V_{DS}(sat)
- n- & p-channel MOSFET drain current I_D equations for linear and saturation regions
- Transconductance for linear g_m and saturation g_{ms} regions
- MOSFET substrate bias effects- change in V_T and Q_{SD} ' and body effect coefficient γ
- MOSFET frequency limits

Chapter 12 The Bipolar Transistor

- Modes- active, saturation, cutoff, and inverse
- Minority carrier concentration distributions for forward-active (linear) mode
- Common-base current gain α
- Emitter injection efficient factor γ , base transport factor α_T , and recombination factor δ
- Emitter current densities and currents- J_{nE} , J_{pE} , I_{nE} , I_{pE} , J_{E} , and I_{E}
- Common-emitter current gain β
- I_C and I_B