Example- For silicon at 300 K , we have an acceptor concentration of $1 \times 10^{17} \# / \mathrm{cm}^{3}$. We wish to add donors to make an \boldsymbol{n}-type (use phosphorous) compensated semiconductor with a conductivity of $20 \mathrm{~S} / \mathrm{cm}=2000 \mathrm{~S} / \mathrm{m}$, i.e., determine N_{d}.

Known- $T=300 \mathrm{~K}, N_{a}=1 \times 10^{17} \# / \mathrm{cm}^{3}$, and $\sigma=20 \mathrm{~S} / \mathrm{cm}=2000 \mathrm{~S} / \mathrm{m}$.
Per (5.20), the resistivity is $\rho=1 / \sigma=1 / 20=0.05 \Omega \cdot \mathrm{~cm}$.
Using (5.23), $\sigma=e\left(\mu_{n} n+\mu_{p} p\right)$.
Assume intrinsic charge concentration, $n_{i}=1.5 \times 10^{10} \# / \mathrm{cm}^{3}$ (Table B.4) is negligible compared to N_{a} and N_{d}, and that the net negative charge concentration is $n \approx N_{d}-N_{a}$. having mobility μ_{n}. This gives $\sigma \simeq e \mu_{n}\left(N_{d}-N_{a}\right)=\left(1.6022 \cdot 10^{-19} \mathrm{C}\right) \mu_{n}\left(N_{d}-10^{17} \mathrm{~cm}^{-3}\right)$.

Using $\rho=0.05 \Omega \cdot \mathrm{~cm}$ and Figure 5.4a, we read that the impurity concentration for n type (phosphorous) should be $\underline{\mathbf{2} \times 10^{17} \# / \mathbf{c m}^{3}}$

$2^{*} 10^{17} \mathrm{~cm}^{-3}$
From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Letting $2 \times 10^{17} \# / \mathrm{cm}^{3}=N_{d}-N_{a}=N_{d}-10^{17} \# / \mathrm{cm}^{3} \Rightarrow N_{d}=3 \times 10^{17} \# / \mathrm{cm}^{3}$.
The overall ionized impurity concentration is then

$$
N_{I}=N_{d}^{+}+N_{a}^{-}=3 \times 10^{17}+10^{17} \Rightarrow N_{I}=\underline{4} \times 10^{17} \# / \mathrm{cm}^{3} .
$$

Going to Figure 5.3 (middle graph for silicon), we can read what the electron mobility should be for this impurity concentration. This yields $\mu_{n} \approx 440 \mathrm{~cm}^{2} / \mathrm{V}$-s.

This gives $\sigma \simeq e \mu_{n}\left(N_{d}-N_{a}\right)=\left(1.6022 \cdot 10^{-19}\right)(440)\left(3 \cdot 10^{17}-10^{17}\right) \Rightarrow \sigma \simeq 14.1 \mathrm{~S} / \mathrm{cm}$ and $\rho=0.07 \Omega \cdot \mathrm{~cm}$. A bit low for σ and a bit high for ρ. Looking at Figure 5.4a, we see that increasing the impurity concentration (and hence N_{d}) decreases the resistivity.

For a second try, let's bump the donor concentration up by the ratio of resistivities

$$
0.07 / 0.05^{*} 3 \times 10^{17} \# / \mathrm{cm}^{3}=4.2 \times 10^{17} \# / \mathrm{cm}^{3} \quad \Rightarrow \quad \underline{N_{d}}=4 \times 10^{17} \# / \mathrm{cm}^{3} \text { (second try) }
$$

The overall ionized impurity concentration is then $4 \times 10^{17}+10^{17} \Rightarrow N_{I}=\underline{5} \underline{10^{17} \# / \mathrm{cm}^{3}}$.
Going back to Figure $5.3 \mathrm{w} /$ our new N_{I}, we read $\mu_{n} \approx 410 \mathrm{~cm}^{2} / \mathrm{V}$-s.

So $\underline{N_{d}}=4 \times 10^{17} \# / \mathrm{cm}^{3}$ gives

$$
\begin{aligned}
& \sigma \simeq e \mu_{n}\left(N_{d}-N_{a}\right)=\left(1.6022 \cdot 10^{-19}\right)(410)\left(4 \cdot 10^{17}-10^{17}\right) \\
& \Rightarrow \underline{\boldsymbol{\sigma}=\mathbf{1 9 . 7 ~ S} / \mathbf{c m}} \& \rho=\mathbf{0 . 0 5 1} \Omega \cdot \mathbf{c m}
\end{aligned}
$$

Given graphical accuracy, this solution is acceptable (1.5% error).

