From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

For the Group IV elemental semiconductor Si ($E_g = 1.12 \text{ eV}$) and Ge ($E_g = 0.66 \text{ eV}$), we use Group III elements as acceptors and Group V elements as donors.

Table 4.3 I Impurity ionization energies in silicon

Impurity	Ionization energy (eV)	
	Si	Ge
Donors		
Phosphorus	0.045	0.012
Arsenic	0.05	0.0127
Acceptors		
Boron	0.045	0.0104
Aluminum	0.06	0.0102

Note that the ionization energies are indeed far smaller than the gap energies for silicon and germanium.

For a Group III-V semiconductor such as GaAs ($E_g = 1.424 \text{ eV}$), we use Group II elements as acceptors and Group VI elements as donors.

Table 4.4 Impurity ionization energies in gallium arsenide		
Impurity	Ionization energy (eV)	
<i>Donors</i> Selenium Tellurium Silicon Germanium	0.0059 0.0058 0.0058 0.0061	
Acceptors Beryllium Zinc Cadmium Silicon Germanium	0.028 0.0307 0.0347 0.0345 0.0404	

Note that the ionization energies are indeed far smaller than the gap energy for gallium arsenide.