From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Table 12.1 | Notation used in the analysis of the bipolar transistor

Notation	Definition
For both the npn and pnp	transistors
N_E , N_B , N_C	Doping concentrations in the emitter, base, and collector
x_E, x_B, x_C	Widths of neutral emitter, base, and collector regions
D_E, D_B, D_C	Minority carrier diffusion coefficients in emitter, base, and collector regions
L_E, L_B, L_C	Minority carrier diffusion lengths in emitter, base, and collector regions
$ au_{E0}, \ au_{B0}, \ au_{C0}$	Minority carrier lifetimes in emitter, base, and collector regions
For the npn	
p_{E0}, n_{B0}, p_{C0}	Thermal-equilibrium <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector
$p_E(x'), n_B(x), p_C(x'')$	Total <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector [steady-state]
$\delta p_E(x')$, $\delta n_B(x)$, $\delta p_C(x'')$	Excess <i>minority carrier</i> hole, electron, and hole concentrations in the emitter, base, and collector [steady-state]
For the pnp	
n_{E0}, p_{B0}, n_{C0}	Thermal-equilibrium <i>minority carrier</i> electron, hole, and electron concentrations in the emitter, base, and collector
$n_E(x'), p_B(x), n_C(x'')$	Total <i>minority carrier</i> electron, hole, and electron concentrations in the emitter, base, and collector [steady-state]
$\delta n_E(x')$, $\delta p_B(x)$, $\delta n_C(x'')$	Excess <i>minority carrier</i> electron, hole, and electron concentrations in the emitter, base, and collector [steady-state]

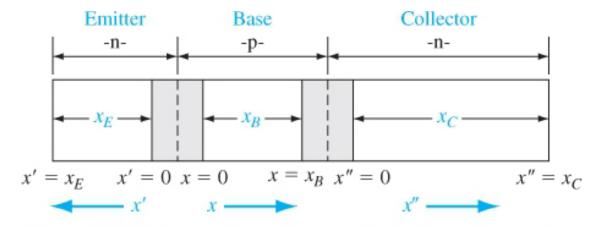


Figure 12.13 | Geometry of the npn bipolar transistor used to calculate the minority carrier distribution.