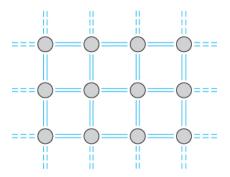
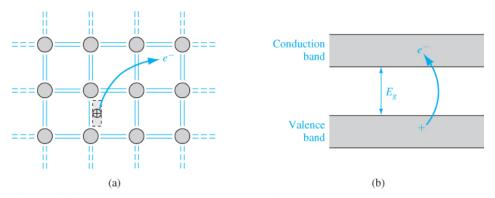
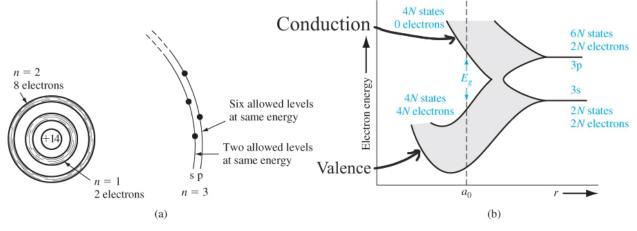
From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.


Figure 3.12 | Two-dimensional representation of the covalent bonding in a semiconductor at T = 0 K.

\triangleright Now, let temperature increase so that K.E. = T > 0

Figure 3.13 (a) Two-dimensional representation of the breaking of a covalent bond. (b) Corresponding line representation of the energy band and the generation of a negative and positive charge with the breaking of a covalent bond.

➤ For silicon, we might see

Figure 3.4 (a) Schematic of an isolated silicon atom. (b) The splitting of the 3s and 3p states of silicon into the allowed and forbidden energy bands. (*From Shockley* [6].)

- \triangleright Looking at energy E versus k bands at a) 0 K and and b) > 0 K, we see that some of the valence electrons in the highest energy states move to some of the lowest energy conduction states.
- ➤ Note the distribution is shown as symmetric as we are assuming there is no externally applied forces or fields.

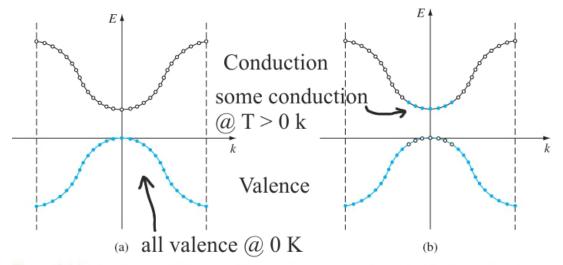


Figure 3.14 | The E versus k diagram of the conduction and valence bands of a semiconductor at (a) T = 0 K and (b) T > 0 K.