From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

p type MOS

Figure 10.9 | The energy-band diagram in the p-type semiconductor at the threshold inversion point.

- We choose to define the surface inversion as "The point at which the surface is as much n type as the bulk material is p type." This is called the **threshold inversion point**.
- ➤ This means E_{Fi} must be as much below E_F at the surface (boundary between the semiconductor and oxide) as it is above E_F in the bulk semiconductor substrate. For energy levels expressed in terms of these potentials, $e \phi_s = 2 e \phi_{fp}$ at the threshold inversion point.
- > This implies that the surface potential $\phi_s = 2 \phi_{fp}$ (called the **threshold voltage**) where $\phi_{fp} = V_t \ln\left(\frac{N_a}{n_i}\right)$.
- > Therefore, the depletion layer depth/thickness is $x_{dT} = \left(\frac{4\varepsilon_s \phi_{fp}}{eN_a}\right)^{1/2} = \sqrt{\frac{4\varepsilon_s \phi_{fp}}{eN_a}}$.

It does not change much with increasing ϕ_s beyond the threshold voltage.

n type MOS

Figure 10.10 | The energy-band diagram in the n-type semiconductor at the threshold inversion point.

- We choose to define the surface inversion as "The point at which the surface is as much p type as the bulk material is n type."
- This means E_{Fi} must be as much above E_F at the surface (boundary between the semiconductor and oxide) as it is below E_F in the bulk n type substrate.
- ▶ In terms of energy, $e \phi_s = 2 e \phi_{fn}$.
- > This implies that the surface potential $\phi_s = 2 \phi_{fn}$ where $\phi_{fn} = V_t \ln\left(\frac{N_d}{n_i}\right)$.
- > Therefore, the depletion layer depth/thickness is $x_{dT} = \left(\frac{4\varepsilon_s\phi_{fn}}{eN_d}\right)^{1/2} = \sqrt{\frac{4\varepsilon_s\phi_{fn}}{eN_d}}$.

Threshold Point

- > One might assume that the threshold would occur as soon as surface potential $\phi_s = \phi_{fp}$, because the concentration of majority carriers has been reduced to that of an intrinsic semiconductor at that point.
- ▶ However, as ϕ_s increases, the retreating holes "uncover" the negatively charged dopant ions N_a^- in the crystal lattice of the p-type substrate at the boundary. These fixed ions repel the electrons needed to produce a current between the source and drain (when we get to the MOSFET).
- → When ϕ_s is increased to $2\phi_{fp}$, the dopant ions are completely uncovered, such that further increases in the gate-source voltage causes electrons to flood into the channel instead of making significant increases in band bending.
- ➤ In other words, an n-layer starts to form when $\phi_s = \phi_{fp}$, but moving charges don't happen until $\phi_s = 2\phi_{fp}$.

Example- Find the potential ϕ_{fn} and depletion layer depth x_d when we have germanium doped to $N_d = 10^{15}$ cm⁻³ = 10^{21} m⁻³ at 300 K. Also, find the threshold surface potential and depth.

From Table B.4- $n_i = 2.4 \times 10^{13} \text{ cm}^{-3}$ and $\varepsilon_s = 16\varepsilon_0$.

Per (7.10),
$$V_t = \frac{k_B T}{e} = \frac{8.617333 \times 10^{-5} \text{ eV/K} (300 \text{ K})}{e} \implies \frac{V_t = 0.025852 \text{ V}}{e}.$$

Per (10.7), $\phi_{fn} = V_t \ln\left(\frac{N_d}{n_i}\right) = 0.025852 \ln\left(\frac{10^{15}}{2.4 \times 10^{13}}\right) \implies \frac{\phi_{fn} = 0.09642 \text{ V}}{e}.$

Adapting equation (10.5), we get

$$x_{d} = \sqrt{\frac{2\varepsilon_{s}\phi_{fn}}{eN_{d}}} = \sqrt{\frac{2(16)8.8541878 \times 10^{-12}(0.09642)}{1.602176634 \times 10^{-19}(10^{21})}} \implies x_{d} = 4.13 \times 10^{-7} \text{ m}.$$

The threshold voltage is $\phi_s = 2\phi_{fn} = 2(0.09642) \implies \phi_s = 0.19284 \text{ V}.$

The maximum depth, per equation (10.8), is

$$x_{dT} = \sqrt{\frac{4\varepsilon_s \phi_{fn}}{e N_d}} = \sqrt{\frac{4(16)8.8541878 \times 10^{-12} (0.09642)}{1.602176634 \times 10^{-19} (10^{21})}} \implies \underline{x_{dT} = 5.84 \times 10^{-7} \text{ m}}.$$