
From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

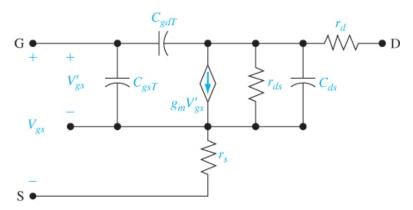

n-channel MOSFET

Figure 10.52 | Inherent resistances and capacitances in the n-channel MOSFET structure.

- Note that the body (B) and source (S) are both grounded (common-source).
- ▶ There are gate-source C_{gs} and gate-drain C_{gd} capacitances to represent the interaction between the gate and the channel charges on each end (D & S).
- ➤ In addition, there are <u>parasitic</u> gate-source C_{gsp} and gate-drain C_{gdp} capacitances due to manufacturing issues which cause gate oxide and the drain & source regions to overlap. $C_{gsp} = C_{ox}$ (gate-source overlap area) and $C_{gdp} = C_{ox}$ (gate-drain overlap area).
- > There is a drain-to-substrate C_{ds} capacitance to represent the pn junction capacitance. [Not needed for source-to-substrate as they are both grounded.]
- > The drain and source will have some series resistances, r_d and r_s .
- ► Lastly, we have the voltage-controlled current-source (VCCS) element, $g_m V_{gs}$ ', to represent the I-V relation of the MOSFET.
- > The transconductance g_m was defined earlier.
- > The internal gate-to-source voltage is V_{gs} ' is what controls the current through the channel. It is the gate-to-source voltage less the voltage drop across the source resistance r_s .

Small-signal circuit model for common-source n-channel MOSFET

Figure 10.53 | Small-signal equivalent circuit of a commonsource n-channel MOSFET.

- ➤ This small-signal model uses total gate-source $C_{gsT} = C_{gs} + C_{gsp}$ and total gatedrain $C_{gdT} = C_{gd} + C_{gdp}$ capacitances, i.e., combine regular and parasitic capacitances.
- ▶ Model adds a resistance r_{ds} to account for slope of MOSFET I-V curve. In saturation, $r_{ds} \rightarrow \infty$.
- ▶ For <u>p-channel model</u>, reverse voltage polarities and current directions.

Low frequency small-signal circuit models

- > At low frequencies, the capacitors act like open circuits.
- ▶ Note that the impedance looking into the gate is infinite in both models.

Model 1

> Neglect r_s and r_d , but keep r_{ds} .

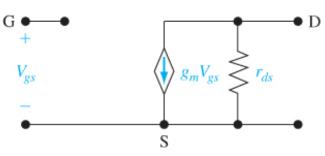
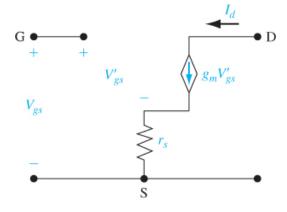



Figure 10.54 | Simplified, low-frequency small-signal equivalent circuit of a common-source n-channel MOSFET.

Model 2

> Neglect r_{ds} and r_d , but keep r_s .

Figure 10.55 | Simplified, lowfrequency small-signal equivalent circuit of common-source n-channel MOSFET including source resistance r_s .

 \succ Here, $I_d = g_m V'_{gs}$.

► By KVL,
$$V_{gs} = V'_{gs} + I_d r_s = V'_{gs} + g_m V'_{gs} r_s = (1 + g_m r_s) V'_{gs}$$
.

> Combining these two equations, we get $I_d = \left(\frac{g_m}{1 + g_m r_s}\right) V_{gs} = g'_m V_{gs}$ where

 $g'_m = \frac{g_m}{1 + g_m r_s}$ is the effective transconductance which is less than g_m .