From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

n-channel enhancement mode MOSFET

▷ Note that the gate (G) voltage V_G has been renamed V_{GS} while the drain (D) voltage has been renamed V_{DS} , this indicates they are referenced to ground (node voltages).

(a) with an applied gate voltage $V_{GS} < V_T$

With $V_{GS} < V_T$, there is no inversion layer (AKA n channel). In fact, there is a depletion layer (space charge region) between the n⁺ drain and source and the p-type substrate. Therefore, $I_D \sim 0$ (ignore leakage) even with $V_{DS} > 0$.

Figure 10.37 | The n-channel enhancement mode MOSFET (b) with an applied gate voltage $V_{GS} > V_T$.

With $V_{GS} > V_T$, there is an inversion layer (AKA n channel). Therefore, $I_D > 0$ with $V_{DS} > 0$. [Reality: <u>electrons</u> to flow from the source to the drain.]

Reality- can't just keep increasing V_{DS} with a corresponding linear increase in $I_{D.}$

Figure 10.39 | Cross section and I_D versus V_{DS} curve when $V_{GS} < V_T$ for (a) a small V_{DS} value, (b) a larger V_{DS} value, (c) a value of $V_{DS} = V_{DS}(\text{sat})$, and (d) a value of $V_{DS} > V_{DS}(\text{sat})$.

Saturation voltage V_{DS} (sat) = $V_{GS} - V_T$. Saturation is a reason to set V_{GS} greater than the minimum required to achieve threshold, i.e., set $V_{GS} > V_T$.