From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Forward biased pn diode

Figure 8.4 | Excess minority carrier concentrations at the space charge edges generated by the forward-bias voltage.

- \rightarrow At 300 K, $k_BT/e = 0.025852$ V.
- \triangleright Therefore, once $V_a > 0.025852$ V, both $n_p(-x_p)$ and $p_n(x_n)$ increase rapidly.
- \triangleright Conversely, if $V_a < 0$ (reverse bias), both $n_p(-x_p)$ and $p_n(x_n)$ decrease rapidly below n_{p0} and p_{n0} respectively (i.e., effectively zero).

Example- Let's revisit our germanium pn junction at 300 K where $N_a = 8 \times 10^{15}$ cm⁻³ (p region) and $N_d = 10^{16}$ cm⁻³ (n region). Calculate the excess minority carrier concentrations at the edges of the depletion layer/space charge region when a forward bias voltage of 0.2 V is applied.

From Table B.4, $n_i = 2.4 \times 10^{13} \,\text{cm}^{-3}$

p region-

majority carrier concentration is $p_{p0} = N_a = 8 \times 10^{15} \text{ cm}^{-3}$ minority carrier concentration is $n_{p0} = n_i^2/N_a = (2.4 \times 10^{13})^2/8 \times 10^{15} = 7.2 \times 10^{10} \text{ cm}^{-3}$

n region-

majority carrier concentration is $n_{n0} = N_d = 10^{16} \text{ cm}^{-3}$ minority carrier concentration is $p_{n0} = n_i^2/N_d = (2.4 \times 10^{13})^2/10^{16} = 5.76 \times 10^{10} \text{ cm}^{-3}$

$$n_p(-x_p) = n_{p0} e^{eV_a/k_BT} = 7.2 \times 10^{10} e^{0.2/0.025852} \implies \underline{n_p(-x_p)} = 1.649 \times 10^{14} \text{ cm}^{-3} << N_a$$

$$p_n(x_n) = p_{n0} e^{eV_a/k_BT} = 5.76 \times 10^{10} e^{0.2/0.025852} \implies \underline{p_n(x_n)} = 1.319 \times 10^{14} \text{ cm}^{-3} << N_d$$

Low level injection assumption is OK.