From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

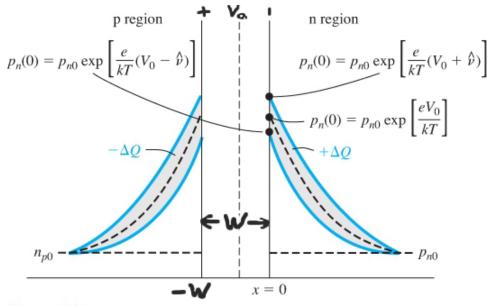


Figure 8.21 | Minority carrier concentration changes with changing forward-bias voltage.

- At the boundary between the depletion layer and n region (now at x = 0), the minority carrier (holes) concentration varies between a high of $p_n(0) = p_{n0} e^{(V_a + \hat{v})/V_t}$ and a low of $p_n(0) = p_{n0} e^{(V_a \hat{v})/V_t}$ as $V_a = V_0 + \hat{v}\sin(\omega t)$ varies sinusoidally.
- Similarly, at the boundary between the depletion layer and p region, the minority carrier (electrons) concentration varies between a high of $n_p(-W) = n_{p0} e^{(V_a + \hat{v})/V_t}$ and a low of $n_p(-W) = n_{p0} e^{(V_a \hat{v})/V_t}$ as $V_a = V_0 + \hat{v}\sin(\omega t)$ varies sinusoidally.
- These will serve as boundary conditions for the ambipolar transport equation for the excess minority carriers into the n & p regions.
- > In turn, this is used to find the overall small-signal admittance $Y = \frac{1}{V_t} \Big[I_{p0} \sqrt{1 + j\omega\tau_{p0}} + I_{n0} \sqrt{1 + j\omega\tau_{n0}} \Big].$
- ► Next, we make the <u>low-frequency assumption</u> that $\omega \tau_{p0} \ll 1$ and $\omega \tau_{n0} \ll 1$ to allow the use of the approximation $\sqrt{1+x} \approx 1+x/2$ (truncated Binomial series) to get $Y = \left(\frac{1}{V_t}\right) (I_{p0} + I_{n0}) + j\omega \left[\left(\frac{1}{2V_t}\right) (I_{p0} \tau_{p0} + I_{n0} \tau_{n0}) \right] = g_d + j\omega C_d$.