

From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Figure 8.1 | A pn junction and its associated energy-band diagram for (a) zero bias, (b) reverse bias, and (c) forward bias.

No external bias (a)/left- There is a built-in potential V_{bi} and potential energy barrier eV_{bi} keeping electrons/holes from flowing (no current) and a space region width W and electric field E.

Reverse bias (b)/middle- There is a total potential of $V_R + V_{bi}$ and potential energy barrier $e(V_R + V_{bi})$ keeping electrons/holes from flowing (~no current until breakdown). Space region width W and electric field E increases.

Forward bias (c)/right- There is a total potential of $V_{bi} - V_a$ and potential energy barrier $e(V_{bi} - V_a)$ allowing electrons/holes to flow (current flows from left to right). Space region width W and electric field E decreases.

Key assumptions to find Ideal I-V Relationship

- ➢ Abrupt Junction Clear dividing line between p-type material and n-type material.
- Abrupt Space Charge Region The edges of the space charge region are well defined and abrupt.
- ▶ Boltzmann Approximation applies The doping concentrations used in both materials are low enough that $E_F > 3k_BT$ away from the conduction and valence band edges.
- Low-Level Injection The quantity of minority holes and electrons injected across the pn junction are small enough to be "low-level".
- Total current through the pn <u>structure</u> is constant We do not violate Kirchoff's Current Law; the amount of current that flows into one terminal is that same amount of current that flows out the other terminal and all points in between.
- Each electron and hole current component is continuous No black holes or antimatter allowed!
- ➤ The electron and hole currents are <u>constant</u> in the depletion region No recombination in the depletion region.

Na	Acceptor concentration in p region of the pn junction
N _d	Donor concentration in n region of the pn junction
$n_{n0}=N_d$	Thermal-equilibrium majority carrier electrons in n region
$p_{p0} = N_a$	Thermal-equilibrium majority carrier holes in p region
$n_{p0} = n_i^2 / N_a$	Thermal-equilibrium minority carrier electrons in p region
$p_{n0} = n_i^2 / N_d$	Thermal-equilibrium minority carrier holes in n region
$n_p = n_{p0} + \delta n_p$	Total minority carrier electron concentration in p region
$p_n = p_{n0} + \delta p_n$	Total minority carrier hole concentration in n region
$n_p(-x_p)$	Minority carrier electrons in p region at space charge edge
$p_n(x_n)$	Minority carrier holes in n region at space charge edge
$\delta n_p = n_p - n_{p0}$	Excess minority carrier electron concentration in p region
$\delta p_n = p_n - p_{n0}$	Excess minority carrier hole concentration in n region

Definitions (all with typical units of #/cm³)