From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

- Note the electric field magnitude peaks at the junction (x = 0) and linearly decreases to zero at $-x_p \& +x_n$.
- ➤ Why? Maximum amount of charges on either side of junction. As you go into the charged region on either side, some of the electric field lines are originating/terminating on those charges. So, you have fewer and fewer as you approach $-x_p$ and $+x_n$.

Figure 7.6 | Electric potential through the space charge region of a uniformly doped pn junction.

Since $V = \phi = -\int \overline{E} \cdot d\overline{l}$, the potential/voltage starts at zero at $-x_p$ since the electric field is zero for $-\infty \le x \le -x_p$. It then build up across the space charge/depletion region to reach the final value V_{bi} at $+x_n$.