From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Figure 6.14 | Thermal-equilibrium energy-band diagrams for (a) n-type semiconductor and (b) p-type semiconductor.

- For *n*-type extrinsic semiconductors (left), E_F is greater than E_{Fi} , i.e., E_F gets closer to E_c .
- For *p*-type extrinsic semiconductors (right), E_F is less than E_{Fi} , i.e., E_F gets closer to E_v .

Figure 6.15 | (a) Thermal-equilibrium energy-band diagram for $N_d = 10^{15}$ cm⁻³ and $n_i = 10^{10}$ cm⁻³. (b) Quasi-Fermi levels for electrons and holes if 10^{13} cm⁻³ excess carriers are present.

- > For an *n*-type extrinsic semiconductor where $N_d = 10^{15}$ cm⁻³ (left), E_F is greater than E_{Fi} , i.e., E_F gets closer to E_c , as expected.
- ➤ When excess charge carriers $\delta p = \delta n = 10^{13}$ cm⁻³ are introduced, note that the quasi-Fermi energy level E_{Fn} for the **majority** electrons is only slightly larger than E_F . However, E_{Fp} for the **minority** holes moves dramatically toward E_v as δp is a big increase on top of p_0 .