From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Figure 4.14 | Energy-band diagram of a compensated semiconductor showing ionized and un-ionized donors and acceptors.

- $N_d \equiv$ donor doping concentration (#/m³ or #/cm³). These are initially charge neutral.
- $N_a \equiv$ acceptor doping concentration (#/m³ or #/cm³). These are initially charge neutral.
- $N_d^+ \equiv$ concentration of ionized donors (#/m³ or #/cm³). These are **positive** as they lost their electron to conduction band or (less likely) they lost an electron to acceptors.
- $N_a^- \equiv$ acceptor doping concentration (#/m³ or #/cm³). These are **negative** as they gained an electron from valence band or (less likely) they gained an electron from donors.
- $n_d \equiv$ concentration of donors that did not ionize (#/m³ or #/cm³). These are neutral.
- $p_a \equiv$ concentration of acceptors that did not ionize (#/m³ or #/cm³). These are neutral.
- $n_0 \equiv$ total concentration of electrons in conduction band (#/m³ or #/cm³). These are **negative**.
- $p_0 \equiv$ total concentration of holes in valence band (#/m³ or #/cm³). These are **positive**.