
From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Figure 3.27 | The density of energy states in the conduction band and the density of energy states in the valence band as a function of energy.

▶ Looking ahead to Chapter 4, Table 4.1 gives some typical values (@ 300 K?).

Table 4.1 | Effective density of states function and density of states effective mass values

	$N_c~({ m cm}^{-3})$	$N_v ({ m cm^{-3}})$	m_n^*/m_0	m_p^*/m_0
Silicon	$2.8 imes10^{19}$	$1.04 imes 10^{19}$	1.08	0.56
Gallium arsenide	$4.7 imes 10^{17}$	$7.0 imes 10^{18}$	0.067	0.48
Germanium	1.04×10^{19}	$6.0 imes 10^{18}$	0.55	0.37

http://apachepersonal.miun.se/~gorthu/halvledare/Effective%20mass%20in%20semiconductors.htm

Name	Symbol	Germanium	Silicon	Gallium Arsenide
Smallest energy bandgap at 300 K	$E_{g}(eV)$	0.66	1.12	1.424
Effective mass for density of states calculations				
Electrons	$m_{\rm e}^{*}$,dos/ m_0	0.56	1.08	0.067
Holes	$m_{\rm h}^{*}$,dos/ m_0	0.29	0.57/0.811	0.47
Effective mass for conductivity calculations				
Electrons	$m_{\rm e}^{*}$,cond/ m_0	0.12	0.26	0.067
Holes	$m_{\rm h}^{*}$,cond/ m_0	0.21	$0.36/0.386^{1}$	0.34

¹ Due to the fact that the heavy hole band does not have a spherical symmetry there is a discrepancy between the actual effective mass for density of states and conductivity calculations (number on the right) and the calculated value (number on the left) which is based on spherical constant-energy surfaces. The actual constant-energy surfaces in the heavy hole band are "warped", resembling a cube with rounded corners and dented-in faces.